首页> 外文学位 >Measuring the Immeasurable: Refined Spatial Statistics and Morphological Analyses for Biology
【24h】

Measuring the Immeasurable: Refined Spatial Statistics and Morphological Analyses for Biology

机译:测量不可测度:用于生物学的精细空间统计和形态学分析

获取原文
获取原文并翻译 | 示例

摘要

Non-random spatial patterns in biological phenomena are solid indicators for collective behavior. Tissue morphology and, ultimately, tissue function are culminations of collective cell behaviors. This research presents several novel spatial statistics designed explicitly for use in microanatomical analyses to characterize better the spatial patterns of cells, the mechanisms that create them, and their influence on cell regulation and tissue function. Spatial statistics encompass numerous formal methods that seek to study entities based upon their distribution, orientation, or geometric attributes. Though widely used to study large-scale spatial properties, many traditional spatial statistics are poorly suited for application in microanatomy. We developed an intuitive method to procedurally generate spatial patterns likely to be present in histological specimens to address this. By applying this method, we identified the major weaknesses of pre-existing spatial statistics. With these limitations in mind, we adapted several spatial statistics for use in histological analyses. We demonstrated the utility of these improved statistics by identifying correlations between stem cell dynamics and the spatial distribution of crucial regulatory cells in the bone marrow. Next, we developed advanced metrics for cell alignment and polarity by synergizing spatial statistics and morphological operations. Leveraging these metrics we confirmed apolarity and misalignment in a specialized subpopulation of cells in a sensory neuroepithelia in the inner ear. These findings ruled out a possible explanation for discrepancies between vertebrate and invertebrate tissue development. Altogether, the tools presented here improve the accessibility and flexibility of spatial statistics, permitting more robust analyses of spatial patterning and morphology in tissues.
机译:生物现象中的非随机空间模式是集体行为的可靠指标。组织形态和最终的组织功能是集体细胞行为的高潮。本研究提出了几种专门用于显微解剖学分析的新型空间统计,以更好地表征细胞的空间模式、产生细胞的机制以及它们对细胞调节和组织功能的影响。空间统计包含许多形式化方法,这些方法旨在根据实体的分布、方向或几何属性来研究实体。尽管广泛用于研究大规模空间特性,但许多传统的空间统计并不适合在显微解剖学中应用。我们开发了一种直观的方法来程序生成组织学标本中可能存在的空间模式来解决这个问题。通过应用这种方法,我们确定了预先存在的空间统计的主要弱点。考虑到这些局限性,我们调整了几种空间统计用于组织学分析。我们通过确定干细胞动力学与骨髓中关键调节细胞的空间分布之间的相关性,证明了这些改进的统计数据的效用。接下来,我们通过协同空间统计和形态学操作开发了细胞比对和极性的高级指标。利用这些指标,我们证实了内耳感觉神经上皮细胞中一个特殊细胞亚群的无极性和错位。这些发现排除了脊椎动物和无脊椎动物组织发育之间差异的可能解释。总而言之,这里介绍的工具提高了空间统计的可访问性和灵活性,允许对组织中的空间模式和形态进行更稳健的分析。

著录项

  • 作者

    Healy, Connor.;

  • 作者单位

    The University of Utah.;

    The University of Utah.;

    The University of Utah.;

  • 授予单位 The University of Utah.;The University of Utah.;The University of Utah.;
  • 学科 Biostatistics.;Biomedical engineering.;Medical imaging.;Physiology.
  • 学位
  • 年度 2021
  • 页码 196
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Biostatistics.; Biomedical engineering.; Medical imaging.; Physiology.;

    机译:生物统计学。;生物医学工程。;医学成像。;生理学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号