首页> 外文学位 >An Evaluation of the Lower Ohio River Channel, Blue, and Flathead Catfish Fishery
【24h】

An Evaluation of the Lower Ohio River Channel, Blue, and Flathead Catfish Fishery

机译:俄亥俄河下游航道、蓝鲶和扁头鲶鱼渔业评估

获取原文
获取原文并翻译 | 示例

摘要

In 2015, Illinois changed size and harvest limits for catfishes (blue catfish Ictalurus furcatus, flathead catfish Pylodictis olivaris, and channel catfish Ictalurus punctatus) in the Ohio River to match those of neighboring states in order to provide continuity of the regulations and promote a trophy catfish fishery. Regulations imposed a daily limit of one blue catfish or flathead catfish ≥ 35 inches (88.9 cm) and one channel catfish ≥ 28 inches (71.1 cm) per fisher and a 13 inch (33.0 cm) minimum length limit for all species with no bag limit. Although management regulations were implemented, potential efficacy of the implemented regulations and appropriate (i.e. most precise or accurate with fewest samples) monitoring protocols were unknown. Furthermore, there was general lack of understanding of early life movements, natal dispersal timing and principal recruitment sources that aide in determining appropriate spatial scale for monitoring and managing lower Ohio River catfish stocks.To fill these knowledge gaps the following methods were employed: 1) simulation modeling was used to evaluate precision in estimating catch and size distribution metrics for monitoring population trends with increasing sample size (i.e., sampling events), 2) N-mixture modeling was used to estimate size selectivity of multiple gears using detection probability as a robust alternative to size-specific catchability coefficients, 3) otolith microchemistry (Sr:Ca and Ba:Ca) was employed to determine principal recruitment sources, early life movement patterns, and provide fisheries managers with a better understanding of the spatial extent to which management actions should be implemented, 4) Bayesian modeling was used to estimate growth and mortality, 5) Yield-per-recruit modeling was used to estimate and evaluate fishing mortality rates that would result in growth overfishing (FMAX) and yield at FMAX (YPRMAX) for three management scenarios (no regulation, minimum length limit [33.0 cm or greater] and a permissive slot limit [33.0 cm–88.9 cm; blue catfish and flathead catfish]). The simulation models presented account for the uncertainty associated with heterogeneous selectivity of a gear, and minimize the impact of rare or extreme catch values. Trotlines and low pulse (15-pps) electrofishing generally required the fewer samples to achieve stable values of catch per unit of effort (CPUE), proportional size distribution (quality; PSDQ), and coefficient of variation (CV) than other gears based on simulation modeling. Abundance and detection probabilities were estimated separately for each species of catfish by length category within and across gears, producing a species-gear-size correction for catch bias used in estimating Proportional Size Distribution–Quality (PSDQ). Corrected (i.e., accounting for detection) PSDQ values were lower than uncorrected estimates suggesting a positive bias for larger fish across the entire sampling regime. Managers should use a combination of low pulse electrofishing, trotlines, and high pulse (60-pps) electrofishing in their monitoring efforts for all three species. Based on microchemistry, ictalurid catfishes in the lower Ohio River appear to recruit from multiple sources and make movements across a broad geographic scale. Additionally, some catfish may be originating from outside the portion of the Ohio River that is managed by Illinois (lower 214 km). Fisheries managers should take this into account when implementing management actions. However, most ictalurid catfishes originated from riverine (e.g., Ohio and Mississippi River) natal environments and not from smaller tributaries, and managers should not expect tributaries to compensate for weak year-classes within the river. Based on yield per recruit modeling, catfish stocks are unlikely to benefit from current regulations or a theoretical minimum size limit given the near complete overlap of YPRMAX confidence intervals for all estimable scenarios and the small s
机译:2015 年,伊利诺伊州更改了俄亥俄河中鲶鱼(蓝鲶鱼 Ictalurus furcatus、平头鲶鱼 Pylodictis olivaris 和斑点鲶鱼 Ictalurus punctatus)的大小和捕捞限制,以匹配邻州的鲶鱼,以提供法规的连续性并促进奖杯鲶鱼渔业。法规规定,每位渔民每天限≥一条 35 英寸(88.9 厘米)的蓝鲶鱼或平头鲶鱼和一条 28 英寸(71.1 厘米)的斑点鲶≥鱼,所有物种的最小长度限制为 13 英寸(33.0 厘米),没有袋子限制。尽管实施了管理法规,但尚不清楚所实施的法规和适当的(即以最少的样本获得最精确或准确)监测方案的潜在有效性。此外,普遍缺乏对早期生命运动、出生扩散时间和主要招募来源的了解,这些来源有助于确定适当的空间尺度来监测和管理俄亥俄河下游鲶鱼种群。为了填补这些知识空白,采用了以下方法:1) 使用仿真模型来评估估计渔获量和规格分布指标的精度,以监测样本量增加的种群趋势(即,采样事件),2) 使用 N 混合物模型来估计多个齿轮的大小选择性,使用检测概率作为特定尺寸可捕获系数的稳健替代方案,3) 耳石微化学(Sr:Ca 和 Ba:Ca)用于确定主要补充来源、早期生命运动模式,并为渔业管理人员更好地了解应实施管理行动的空间范围, 4) 贝叶斯模型用于估计生长和死亡率,5) 每次补充产量模型用于估计和评估三种管理情景(无规定、最小长度限制 [33.0 厘米或更大] 和允许槽限制 [33.0 厘米–88.9 厘米;蓝鲶鱼和平头鲶鱼])的捕捞死亡率。所提出的仿真模型考虑了与齿轮的异质选择性相关的不确定性,并最大限度地减少了稀有或极端渔获值的影响。Trotlines 和低脉冲 (15-pps) 电捕鱼通常需要较少的样本来实现稳定的每单位努力渔获量 (CPUE)、成比例的大小分布(质量;PSDQ) 和变异系数 (CV) 的比起其他基于仿真建模的齿轮。按齿轮内和齿轮之间的长度类别分别估计每种鲶鱼的丰度和检测概率,从而为用于估计比例大小分布-质量 (PSDQ) 的渔获偏差生成物种-齿轮-大小校正。校正后的 PSDQ 值(即考虑检测)低于未校正的估计值,表明在整个采样制度中对较大的鱼呈正偏倚。管理人员在对所有三个物种的监测工作中应结合使用低脉冲电捕鱼、小跑线和高脉冲 (60 pps) 电捕鱼。根据微化学,俄亥俄河下游的 ictalurid 鲶鱼似乎从多个来源招募并在广泛的地理范围内移动。此外,一些鲶鱼可能来自伊利诺伊州管理的俄亥俄河部分(以下 214 公里)之外。渔业管理人员在实施管理行动时应考虑到这一点。然而,大多数鲶鱼起源于河流(例如俄亥俄河和密西西比河)的出生环境,而不是来自较小的支流,管理人员不应指望支流能够补偿河流内较弱的年份。根据每次补充的产量模型,鉴于所有可估计情景的 YPRMAX 置信区间几乎完全重叠,鲶鱼种群不太可能从当前法规或理论上的最小规格限制中受益,并且 s

著录项

  • 作者

    Oliver, Devon C.;

  • 作者单位

    Southern Illinois University at Carbondale.;

  • 授予单位 Southern Illinois University at Carbondale.;
  • 学科 Zoology.
  • 学位
  • 年度 2021
  • 页码 132
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Zoology.;

    机译:动物学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号