首页> 外文学位 >Cross-Flow Turbine Fluid Mechanics: Experimental Optimization and Analysis
【24h】

Cross-Flow Turbine Fluid Mechanics: Experimental Optimization and Analysis

机译:错流涡轮流体力学:实验优化和分析

获取原文
获取原文并翻译 | 示例

摘要

Cross-flow turbines are devices for converting the kinetic energy of wind or water currents to rotational mechanical energy. The dual objectives of this work are to increase our understanding of cross-flow turbine flow physics and to improve the energy conversion performance of individual rotors and arrays. Experiments are conducted using scale models in flumes or tow-tanks. The first group of studies examines cross-flow turbine rotor geometry. To make the parameter space tractable, this work is restricted to straight-bladed turbines with NACA0018 blade profiles. The shape and location of structures used to mount the blades to the center shaft are found to have substantial impact on turbine power output. Likewise, performance is found to be sensitive to the blade mounting angle. Finally, results are presented from a large multi-parameter study on how optimal mounting angle, number of blades, and chord length change with the scale of the turbine. Optimal geometry parameters are found to be strongly co-dependent. The most efficient turbine geometry for small and large-scale rotors is found to differ significantly due to blade boundary layer effects. In the following chapter, measurements of the wake of a cross-flow turbine using particle image velocimetry are presented. A new fluid analysis approach for extracting oscillatory flows is introduced and used to describe the wake features. The form and trajectory of Lagrangian coherent structures in the wake are described. Strong span-wise (axial) flow is observed in the core of shed vortices for the first time in a cross-flow turbine wake. The last chapter focuses on advanced control of cross-flow turbine rotors. A rotor control scheme that optimizes the local flow conditions on the blade by varying the rotor angular velocity is presented, and shown to increase turbine performance by 59% over standard control methods. Control and geometric optimization of an array of two turbine rotors is performed. This includes the introduction of a new array controller that seeks to optimize interactions with the coherent structures observed in the wake analysis. Beneficial interactions between rotors are shown to increase the array performance by 1.3 times that of isolated turbines.
机译:错流式涡轮机是将风或水流的动能转化为旋转机械能的装置。这项工作的双重目标是增加我们对错流涡轮流物理学的理解,并提高单个转子和阵列的能量转换性能。使用水槽或牵引池中的比例模型进行实验。第一组研究检查了错流涡轮机转子的几何形状。为了使参数空间易于处理,这项工作仅限于具有NACA0018叶片轮廓的直叶片涡轮机。研究发现,用于将叶片安装到中心轴的结构的形状和位置对涡轮机功率输出有重大影响。同样,性能对叶片安装角度也很敏感。最后,提出了一项大型多参数研究的结果,该研究说明了最佳安装角度、叶片数量和弦长如何随涡轮机的规模而变化。发现最佳几何参数具有很强的相互依赖性。由于叶片边界层效应,小型和大型转子的最有效涡轮几何形状存在显著差异。在下一章中,介绍了使用粒子图像测速法测量错流涡轮机尾流的方法。介绍了一种用于提取振荡流的新流体分析方法,并用于描述尾流特征。描述了尾流中拉格朗日相干结构的形式和轨迹。在错流涡轮机尾流中,首次在脱落涡流的核心观察到强烈的翼展方向(轴向)流动。最后一章重点介绍错流涡轮转子的高级控制。提出了一种转子控制方案,该方案通过改变转子角速度来优化叶片上的局部流动条件,并表明与标准控制方法相比,涡轮机性能提高了 59%。对两个涡轮转子阵列进行控制和几何优化。这包括引入一个新的数组控制器,旨在优化与尾流分析中观察到的相干结构的交互。结果表明,转子之间的有益相互作用可以将阵列性能提高 1.3 倍于孤立的涡轮机。

著录项

  • 作者

    Strom, Benjamin W.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Fluid mechanics.;Engineering.;Energy.
  • 学位
  • 年度 2019
  • 页码 190
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fluid mechanics.; Engineering.; Energy.;

    机译:流体力学。;工程。;能源。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号