首页> 外文学位 >Peptide Nucleic Acids and CRISPR-Cas9: Mechanisms and Rational Applications for Gene Editing Systems
【24h】

Peptide Nucleic Acids and CRISPR-Cas9: Mechanisms and Rational Applications for Gene Editing Systems

机译:肽核酸和 CRISPR-Cas9:基因编辑系统的机制和合理应用

获取原文
获取原文并翻译 | 示例

摘要

In the past decade, gene editing technology development has exploded across life sciences fields with promise to advance research, agriculture, industry, and the development of curative human therapeutics. Initially lead by CRISPR-associated nucleases and their ability to induce targeted DNA double-strand breaks (DSBs), the gene editing toolbox continues to grow as new technologies emerge and improve. While the goal of these tools is to precisely manipulate DNA sequences in living cells, not all modifications are created equal. Small or large deletions and insertions, precise nucleotide changes, and combination approaches each entail different challenges and require cooperation with endogenous repair pathways to achieve an intended effect. No one tool can accomplish these biochemical feats in a one-fits-all manner. Thus, it is imperative to advance current technologies and create new approaches as diverse as the problems they set out to solve while maximizing safety for potential use in human therapy.The overarching goal of this dissertation is to apply principles of DNA repair and nucleic acid biochemistry to advance our understanding and implementation of gene editing tools across applications. First, using a novel high-throughput platform to detect nucleic acid structure interactomes, we reveal that synthetic triplex-forming peptide nucleic acids (PNAs) bind DNA strands to elicit repair factors and pathways previously unknown to participate in site-directed gene editing. Specifically, by interrogating and comparing up to 2688 parallel nucleic acid-protein interactions in vitro, we identified PNA triplex-bound factors implicated in nucleotide excision repair (XPA, XPC), single-strand annealing repair (RAD52), and recombination intermediate structure binding (TOP3A, BLM, MUS81). We go on to suggest measures for improving PNAmediated gene editing efficiencies and potential strategies for safe novel gene editing approaches.In this work, we also outline the development, characterization, and application of PNAs to modulate CRISPR-Cas9 activity and affinity for target genomic sequences. Based on rational antisense targeting of PNAs to guide RNA (gRNA) sequences, we describe methods to rapidly inhibit Cas9 for facile spatiotemporal control or to improve overall specificity and reduce deleterious off-target editing. This is a seminal study for the use of PNAs to modulate enzymatic activity and engineer nucleoproteins by direct antisense binding, and demonstrably improves gene editing safety and versatility without associated cellular toxicity.Finally, to understand the influence of novel metabolites on DNA repair deficiency in IDH mutant cancers, we use a computationally informed CRISPRCas9 design pipeline to correlate local methylation status with DSB repair at endogenous loci throughout the genome. Building on a body of prior work, we use this approach to establish the mechanism by which oncometabolites induce hypermethylation of histone 3 lysine 9 (H3K9) to mask local chromatin signaling required for proper DSB repair. This finding indicates potential strategies for targeted therapeutics in this prevalent class of cancers.Overall, this work establishes multiple advances for the improvement of gene editing tools and our ability to rationally manipulate DNA sequences in living cells. As part of a larger and continually evolving body of work, these projects progress our ability to develop and apply innovative, versatile, and safe next-generation gene editors for future human therapeutics and beyond.
机译:在过去十年中,基因编辑技术的发展在生命科学领域呈爆炸式增长,有望推动研究、农业、工业和人类治疗性疗法的开发。基因编辑工具箱最初以 CRISPR 相关核酸酶及其诱导靶向 DNA 双链断裂 (DSB) 的能力为主导,随着新技术的出现和改进,基因编辑工具箱不断发展壮大。虽然这些工具的目标是精确操纵活细胞中的 DNA 序列,但并非所有修饰都是一样的。小的或大的缺失和插入、精确的核苷酸变化和组合方法都会带来不同的挑战,需要与内源性修复途径合作才能达到预期的效果。没有一种工具可以以一种万能的方式完成这些生化壮举。因此,必须推进当前技术并创造与他们着手解决的问题一样多样化的新方法,同时最大限度地提高人类治疗中潜在用途的安全性。本论文的总体目标是应用 DNA 修复和核酸生物化学的原理来促进我们对基因编辑工具在应用中的理解和实施。首先,使用一种新的高通量平台来检测核酸结构相互作用组,我们揭示了合成的三链形成肽核酸 (PNA) 结合 DNA 链以引发以前未知的修复因子和途径参与定点基因编辑。具体来说,通过询问和比较多达 2688 个体外平行核酸-蛋白质相互作用,我们确定了与核苷酸切除修复 (XPA、XPC)、单链退火修复 (RAD52) 和重组中间体结构结合 (TOP3A、BLM、MUS81) 有关的 PNA 三链结合因子。我们继续提出了提高 PNA 介导的基因编辑效率的措施和安全的新型基因编辑方法的潜在策略。在这项工作中,我们还概述了 PNA 的开发、表征和应用,以调节 CRISPR-Cas9 活性和对靶基因组序列的亲和力。基于 PNA 的理性反义靶向以指导 RNA (gRNA) 序列,我们描述了快速抑制 Cas9 以进行简单时空控制或提高整体特异性并减少有害脱靶编辑的方法。这是一项开创性的研究,旨在使用 PNA 通过直接反义结合来调节酶活性和工程化核蛋白,并明显提高了基因编辑的安全性和多功能性,而没有相关的细胞毒性。最后,为了了解新型代谢物对 IDH 突变癌症中 DNA 修复缺陷的影响,我们使用计算知情的 CRISPRCas9 设计管道将局部甲基化状态与整个基因组内源性基因座的 DSB 修复相关联。在先前的大量工作的基础上,我们使用这种方法来确定肿瘤代谢物诱导组蛋白 3 赖氨酸 9 (H3K9) 高甲基化以掩盖正确 DSB 修复所需的局部染色质信号传导的机制。这一发现表明了在这类普遍癌症中靶向治疗的潜在策略。总体而言,这项工作为改进基因编辑工具和我们合理操纵活细胞中 DNA 序列的能力建立了多项进展。作为更大且不断发展的工作的一部分,这些项目提高了我们为未来人类治疗及其他领域开发和应用创新、多功能和安全的下一代基因编辑器的能力。

著录项

  • 作者

    Economos, Nicholas G.;

  • 作者单位

    Yale University.;

    Yale University.;

    Yale University.;

  • 授予单位 Yale University.;Yale University.;Yale University.;
  • 学科 Genetics.;Bioengineering.;Molecular biology.
  • 学位
  • 年度 2023
  • 页码 185
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Genetics.; Bioengineering.; Molecular biology.;

    机译:遗传学。;生物工程。;分子生物学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号