首页> 外文学位 >Determination of a Hysteresis Model Parameters for Ferromagnetic Objects Detection
【24h】

Determination of a Hysteresis Model Parameters for Ferromagnetic Objects Detection

机译:确定用于铁磁目标检测的磁滞模型参数

获取原文
获取原文并翻译 | 示例

摘要

This dissertation explores different aspects of the detection of hidden objects, including its theoretical modelling and numerical investigation. First, the magnetic properties of layered soil are analyzed using a simulation package called HysterSoft. It is a program for simulating magnetic material hysteresis phenomena. To combine phenomenological models of hysteresis, it offers a user-friendly interface. The Energetic model, the Hodgdon model, the Jiles-Atherton model, the Langevin model, the Preisach model, and the Bouc-Wen model are some of the hysteresis models that have been implemented thus far. The nature of soil accounts primarily for the level of coercive field it may have. Low coercive field of hysterons in soils leads to high magnetization, permittivity, and permeability. High coercive field of hysterons in soils leads to low magnetization, permittivity, and permeability. The properties of soils are considered in the modeling of hidden objects detection by electromagnetics method.This dissertation uses soil model with specific permittivity and permeability to model the environment where a hidden object to be detected is determined. The feature of the hidden object is extracted based on its Radar Cross Section (RCS) feature. Furthermore, using the full wave electromagnetic modeling program FEKO, we used a layered soil model to describe subsurface objects, particularly concealed/hidden objects. The name FEKO is from the German acronym "Feldberechnung für K?rper mit beliebiger Oberfl?che," which means "field calculations with bodies of arbitrary shape." It is used as 3D electromagnetic simulator. By adjusting the material characteristics of soil based on permittivity and conductivity of the surrounding soils, depth, and incoming incident wave direction for detection of the buried item, we undertake a parametric investigation of the radar cross section (RCS) characteristics. Several simulations results shed light on how the physical characteristics of the examined hidden object and its radar signatures are related. The technique used has the benefit of allowing for the efficient collection of hidden object's RCS data with consideration to surrounding soils.Furthermore, we examined the Gauss-Newton based algorithm in this dissertation by using the algorithm uniquely for electromagnetic nonlinear hysteresis curve. Afterward, we modified the Gauss-Newton based algorithm to achieve a more efficient and robust performance by factoring noise into the algorithm. We apply this robust algorithm to the Generalized Prandtl Ishilinskii. Thereafter, a modified GPI (mGPI) is developed for a better Gauss-Newton iterative convergence. Nonlinear transformations are used on this Gauss-Newton based algorithm.The unknown model parameters for GPI must be re-defined so that they fall inside the permitted physical range i.e., symmetrical about the origin. Using the least square technique and linear search methods, we modified the iterative stage to improve the algorithm's error-reducing characteristics. The development of our modified Gauss-Newton method demonstrates that by characterizing our cost function as a multiplicative function, we determined that the unknown parameters may be identified with confidence limits specified by an established error limit.
机译:本论文探讨了隐藏物体检测的不同方面,包括其理论建模和数值调查。首先,使用名为 HysterSoft 的模拟包分析分层土壤的磁性。它是一个用于模拟磁性材料磁滞现象的程序。为了结合磁滞的现象学模型,它提供了一个用户友好的界面。能量模型、霍奇登模型、吉尔斯-阿瑟顿模型、朗之万模型、普雷萨赫模型和 Bouc-温 模型是迄今为止已经实现的一些磁滞模型。土壤的性质主要解释了它可能具有的矫顽力场水平。土壤中磁阻子的低矫顽力场导致高磁化、介电常数和磁导率。土壤中 hysterons 的高矫顽力场导致低磁化、介电常数和磁导率。在通过电磁学方法对隐藏物体检测进行建模时,考虑了土壤的特性。本论文使用具有特定介电常数和磁导率的土壤模型来模拟确定要检测的隐藏对象的环境。隐藏对象的特征是根据其雷达散射截面 (RCS) 特征提取的。此外,使用全波电磁建模程序 FEKO,我们使用分层土壤模型来描述地下物体,特别是隐藏/隐藏的物体。FEKO 这个名字来自德语首字母缩略词“Feldberechnung für K?rper mit beliebiger Oberfl?che”,意思是“具有任意形状物体的场计算”。它被用作 3D 电磁模拟器。通过根据周围土壤的介电常数和电导率、深度和入射波方向调整土壤的材料特性以检测埋地物品,我们对雷达散射截面 (RCS) 特性进行了参数研究。几个仿真结果揭示了所检查的隐藏物体的物理特性与其雷达特征之间的关系。所使用的技术的优点是允许在考虑周围土壤的情况下有效地收集隐藏对象的 RCS 数据。此外,我们在本论文中通过对电磁非线性磁滞曲线使用独特的算法来研究基于 Gauss-Newton 的算法。之后,我们修改了基于 Gauss-Newton 的算法,通过在算法中考虑噪声来实现更高效和更稳健的性能。我们将这种稳健算法应用于广义 Prandtl Ishilinskii。此后,开发了一种改进的 GPI (mGPI) 以实现更好的高斯-牛顿迭代收敛。非线性变换用于这种基于 Gauss-Newton 的算法。必须重新定义 GPI 的未知模型参数,以便它们落在允许的物理范围内,即关于原点对称。使用最小二乘法和线性搜索方法,我们修改了迭代阶段以改善算法的减错特性。我们改进的 Gauss-Newton 方法的发展表明,通过将我们的成本函数描述为乘法函数,我们确定未知参数可以用既定误差限指定的置信限来识别。

著录项

  • 作者

    Idubor, Ayobami Osamudiame.;

  • 作者单位

    Howard University.;

    Howard University.;

    Howard University.;

  • 授予单位 Howard University.;Howard University.;Howard University.;
  • 学科 Electrical engineering.;Computer science.;Electromagnetics.
  • 学位
  • 年度 2022
  • 页码 139
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electrical engineering.; Computer science.; Electromagnetics.;

    机译:电气工程。;计算机科学。;电磁学。;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号