首页> 外文学位 >TOPOLOGICAL OPTIMIZATION OF COMPUTER COMMUNICATION NETWORKS: APPROXIMATE ALGORITHMS AND BOUNDS
【24h】

TOPOLOGICAL OPTIMIZATION OF COMPUTER COMMUNICATION NETWORKS: APPROXIMATE ALGORITHMS AND BOUNDS

机译:计算机通信网络的拓扑优化:近似算法和边界

获取原文
获取原文并翻译 | 示例

摘要

The need to share data and computing facilities among several remotely located users has become increasingly important. We deal with the problem of finding the lowest cost interconnection network observing certain performance and reliability constraints. The networks treated are centralized. Three major network models, namely the Star-Star (SS), the Multidrop (MD), and the Multiloop (ML), are considered. The main problem is divided into three subproblems, namely the Terminal Layout Problem (TLP), the Terminal Assignment Problem (TAP), and the Concentrator Location Problem (CLP). The generic problem P(X,Y:Z) is to solve problem Y (i.e., TLP, TAP, or CLP) with the constraint set Z and the model X (i.e., SS,MD, or ML). The problem SSCLP is P(SS,CLP:CC). The computational complexity of various computer network design problems is considered. It is proven that P(SS,CLP:CC) with the capacity constraint K (LESSTHEQ) 2 can be solved in O((n + m)('3)) time, where n is the number of terminals and m is the number of potential concentrator sites, and P(SS,CLP:(SLASHCIRC)) is NP-complete. P(SS,CLP:CC) with K = 3 is strongly NP-complete, and all the six problems P(ML,Y:Z) are NP-complete, where Y is CLP, TAP, or TLP, and Z is (SLASHCIRC) or CC. We show that SSCLP can be formulated as a Minimization of a Supermodular Set Function (MSSF). The equivalence of the chain-property and local-optimality for the MSSF is established. A performance bound for the GREEDY and STINGY heuristics applied to MSSF is established. Three systems of inequalities are derived and they are used to obtain lower bounds. The Lagrangian Relaxation (LR) method is considered. Three forms of the LR method are used for SSCLP. The resulting relaxed problems are shown to be equivalent to (different) linear programming problems. A heuristic is suggested for SSCLP that produces both a feasible solution and a lower bound. It is shown that if z an z are the lower and upper bounds found by the heuristic, respectively, then z/z (LESSTHEQ) K. Some computational examples with up to 50 terminals and 20 potential concentrator sites are considered. All the network designs obtained are shown to be within 2.8% of optimal.
机译:在多个远程用户之间共享数据和计算设施的需求变得越来越重要。我们处理的问题是寻找成本最低的互连网络,并遵守某些性能和可靠性约束。处理的网络是集中的。考虑了三种主要的网络模型,即 Star-Star (SS)、Multidrop (MD) 和 Multiloop (ML)。主要问题分为三个子问题,即终端布局问题 (TLP)、终端分配问题 (TAP) 和集中器位置问题 (CLP)。泛型问题 P(X,Y:Z) 是使用约束集 Z 和模型 X(即 SS、MD 或 ML)求解问题 Y(即 TLP、TAP 或 CLP)。问题 SSCLP 是 P(SS,CLP:CC)。考虑了各种计算机网络设计问题的计算复杂性。事实证明,容量约束为 K (LESSTHEQ) 2 的 P(SS,CLP:CC) 可以在 O((n + m)('3)) 时间内求解,其中 n 是终端数,m 是潜在集中器站点数,P(SS,CLP:(SLASHCIRC)) 是 NP 完备的。K = 3 的 P(SS,CLP:CC) 是强 NP 完备的,所有六个问题 P(ML,Y:Z) 都是 NP 完备的,其中 Y 是 CLP、TAP 或 TLP,Z 是 (SLASHCIRC) 或 CC。我们表明 SSCLP 可以表述为超模集函数 (MSSF) 的最小化。建立了 MSSF 的链属性和局部最优性的等价性。建立了应用于 MSSF 的 GREEDY 和 STINGY 启发式的性能。推导出三个不等式系统,它们用于获得下限。考虑了拉格朗日松弛 (LR) 方法。SSCLP 使用三种形式的 LR 方法。结果的松弛问题被证明等价于(不同的)线性规划问题。建议对 SSCLP 使用启发式方法,该启发式方法可同时生成可行解决方案和下限。结果表明,如果 z 和 z 分别是启发式方法找到的下限和上限,则 z/z (LESSTHEQ) K。考虑了一些具有多达 50 个终端和 20 个潜在集中器站点的计算示例。获得的所有网络设计都显示在最佳状态的 2.8% 以内。

著录项

  • 作者

    MIRZAIAN, ANDRANIK;

  • 作者单位

    Princeton University;

    Princeton University;

    Princeton University;

  • 授予单位 Princeton University;Princeton University;Princeton University;
  • 学科 Computer science
  • 学位
  • 年度 1981
  • 页码 102
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Computer science;

    机译:计算机科学;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号