首页> 外文学位 >Design of Robust Feedback Networks From Ultrasensitive Modules
【24h】

Design of Robust Feedback Networks From Ultrasensitive Modules

机译:超灵敏模块的鲁棒反馈网络设计

获取原文
获取原文并翻译 | 示例

摘要

Synthetic biology promise to provide solutions to many challenges in energy, agriculture, and health by reprogramming cells to execute new tasks in the host organism. In order to do that, it requires (1) the understanding of the design principles that underlie complex dynamics in biology, (2) the development of computational tools that support the identification those principles and (3) the use of those principles and computational tools to guide the experimental implementation of novel biomolecular programs. The main motivation of this thesis is to describe my current progress and future plans to expand (1)-(3).;We incorporate a new design principle, known as ultrasensitivity response, to de- sign robust biomolecular dynamical system. We show that molecular titration in the context of feedback circuits enhance the emergence of oscillations and bistable behavior in the parameter space. We also propose and analyze a new molecular network, termed Brink motif, which exhibits an ultrasensitive input-output response similar to a zero-order ultrasensitive switch. We discuss the Brink motif in the context of robust feedback circuits as a suitable mechanism to build (1) reliable circuits, oscillatory and bistable dynamical behaviors, under parameters uncertainty, downstream load effects and shared resources and (2) robust closed loop controllers that overcome the limitation of unidirectional action controllers. Ultrasensitivity is achieved by combining molecular titration and an activation/deactivation cycle and requires fast titration and switching rates. Additionally, the response of the Brink motif has a precisely tunable threshold, which can be determined by an external input to the motif. We assess the robustness of feedback circuits with numerical simulations and mathematical analysis.
机译:合成生物学有望通过对细胞进行重新编程以在宿主生物体中执行新任务来为能源,农业和健康领域的许多挑战提供解决方案。为此,它需要(1)了解构成生物学复杂动力学基础的设计原理,(2)开发支持识别这些原理的计算工具,以及(3)使用这些原理和计算工具指导新型生物分子程序的实验实施。本文的主要动机是描述我目前的进展和扩展(1)-(3)的计划。我们采用了一种新的设计原理,即超敏响应,来设计强大的生物分子动力学系统。我们表明,在反馈电路的背景下进行分子滴定可增强参数空间中振荡和双稳态行为的出现。我们还提出并分析了一种称为Brink主题的新分子网络,该网络表现出类似于零阶超灵敏开关的超灵敏输入输出响应。我们在稳健反馈电路的背景下讨论Brink主题,以此作为一种合适的机制来构建(1)在参数不确定性,下游负载效应和共享资源下可靠的电路,振荡和双稳态动力学行为,以及(2)克服这些问题的稳健闭环控制器单向动作控制器的局限性。通过结合分子滴定和激活/失活循环来实现超敏性,并且需要快速的滴定和转换速率。此外,Brink主题的响应具有可精确调整的阈值,该阈值可以通过对主题的外部输入来确定。我们通过数值模拟和数学分析评估反馈电路的鲁棒性。

著录项

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Mechanical engineering.;Biomedical engineering.;Biology.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号