首页> 外文学位 >Development of a Design Framework for Compliant Mechanisms using Pseudo-Rigid-Body Models
【24h】

Development of a Design Framework for Compliant Mechanisms using Pseudo-Rigid-Body Models

机译:使用伪刚体模型为顺应性机制设计框架的开发

获取原文
获取原文并翻译 | 示例

摘要

Compliant mechanisms achieve motion by utilizing deformation of elastic members. They offer many advantages over conventional rigid-body mechanisms such as elimination of friction or wear and tear. They also offer greater accuracy and can usually be fabricated as a single part, without the need for assembly. They are used in a wide variety of applications, particularly in the fields of robotics and precision engineering. However, the deformation of different parts of a compliant mechanism makes the analysis and design of such devices a challenge. This dissertation seeks to address the need for a design framework for compliant mechanisms.;Many compliant mechanisms use beam-like structures, or flexures. These elements are usually analyzed using beam theory, in the form of differential equations. In this work, a beam theory approximation combining shear, elongation and Poisson's effects is developed to improve the accuracy of our predictions. The beams are replaced by pseudo-rigid-body (PRB) models, which serve as a convenient tool for the analysis of compliant mechanisms. They are rigid-body approximations of compliant elements that replace the differential equations of beam theory with algebraic equations. PRB models can be developed for various types of compliant elements, and two new models are shown here for soft compliant joints and circular beams. The use of these models in design and analysis problems is also illustrated. A general method of representation and derivation of PRB models is presented, along with a list of various PRB models, to be used as part of a design framework. The reasons for the errors that creep into these models are also studied and guidelines suggested to eliminate them. The initial design of a mechanism for a specific application can be an arduous task, and this is also addressed using a new topology optimization process using PRB models.;The overarching goal of setting up this framework is to streamline the process of design of compliant mechanisms. Using PRB models speeds up the computation involved in design optimization, as opposed to solving differential equations from beam theory or high-fidelity Finite Element Analysis. Better knowledge of accuracy and complexity of the models can help the designer choose the optimal PRB model for a specific application. The parameter optimization framework and the list of PRB models will provide researchers with tools for deriving the values for a PRB model. The topology optimization technique is capable of deducing a feasible solution from a large pool of possible design solutions. This may be extended to shape optimization as well. There are many applications for such methods, some of which are shown here, including compliant robotic manipulators, micropsine grippers for space applications and micro-scale force sensors.
机译:顺应性机构通过利用弹性构件的变形来实现运动。与传统的刚性机构相比,它们具有许多优势,例如消除了摩擦或磨损。它们还提供更高的精度,通常可以组装为单个零件,而无需组装。它们被广泛用于各种应用中,尤其是在机器人技术和精密工程领域。然而,顺应性机构的不同部分的变形使得这种装置的分析和设计成为挑战。本文旨在解决对顺应性机构的设计框架的需求。许多顺应性机构使用梁状结构或挠性件。通常使用微分方程形式的束理论对这些元素进行分析。在这项工作中,结合剪切,伸长和泊松效应的梁理论近似被开发出来,以提高我们预测的准确性。用伪刚体(PRB)模型代替梁,伪梁模型可作为分析顺应性机制的便捷工具。它们是柔顺元件的刚体近似,用代数方程代替梁理论的微分方程。可以针对各种类型的顺应性元件开发PRB模型,此处显示了两个新模型,用于柔顺性顺应性接头和圆梁。还说明了这些模型在设计和分析问题中的使用。提出了一种表示和推导PRB模型的通用方法,以及各种PRB模型的列表,这些方法将用作设计框架的一部分。还研究了导致这些模型错误的原因,并提出了消除这些错误的指南。针对特定应用程序的机制的初始设计可能是一项艰巨的任务,这也可以通过使用PRB模型的新拓扑优化过程来解决。;建立此框架的总体目标是简化合规机制的设计过程。与从梁理论或高保真有限元分析求解微分方程相反,使用PRB模型可加快设计优化中涉及的计算。更好地了解模型的准确性和复杂性可以帮助设计人员为特定应用选择最佳的PRB模型。参数优化框架和PRB模型列表将为研究人员提供用于推导PRB模型值的工具。拓扑优化技术能够从大量可能的设计解决方案中推导出可行的解决方案。这也可以扩展到形状优化。此类方法有许多应用,此处显示了其中的一些,包括顺应性机械手,用于空间应用的微梭夹具和微型力传感器。

著录项

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号