首页> 外文学位 >Spectra of random trees, coalescing non-Brownian particles and geometric influences of Boolean functions.
【24h】

Spectra of random trees, coalescing non-Brownian particles and geometric influences of Boolean functions.

机译:随机树的光谱,合并的非布朗粒子以及布尔函数的几何影响。

获取原文
获取原文并翻译 | 示例

摘要

In the first part of this dissertation, we analyze the eigenvalues of the adjacency matrices of a wide variety of random trees as the size of the trees gets larger. We show that the empirical spectral distributions for many random tree models converge to a deterministic (model dependent) limit as the number of vertices goes to infinity. Our proof uses a suitable notion of local weak convergence for an ensemble of random trees which is known as probability fringe convergence. We conclude for ensembles such as the linear preferential attachment models, random recursive trees, and the uniform random trees that the limiting spectral distribution has a set of atoms that is dense in the real line. We employ a simplified version of Karp-Sipser algorithm to obtain lower bounds on the mass assigned to zero by the empirical spectral measures. For the linear preferential attachment model with parameter a > -1, we show that for any fixed k, the k largest eigenvalues jointly converge in distribution to a non-trivial limit when suitably rescaled.;A well-known result of Arratia shows that one can make rigorous the notion of starting an independent Brownian motion at every point of an arbitrary closed subset of the real line and then building a set-valued process by requiring particles to coalesce when they collide. Arratia noted that the value of this process will be almost surely a locally finite set at all positive times, and a finite set almost surely if the initial value is compact. In the second part of this dissertation, we study the set-valued coalescing processes when the underlying process is not Brownian motion on the real line but is one of the following two examples of self-similar processes: Brownian motions on the Sierpinski gasket and stable processes on the real line with stable index greater than one. We show that Arratia's conclusion is still valid for these two examples.;Finally in the third and last part of this dissertation we present a new definition of influences of boolean functions in product spaces of continuous distributions. Our definition is geometric, and for monotone sets it is equal to the measure of the boundary with respect to uniform enlargement. We prove analogues of the Kahn-Kalai-Linial (KKL) bound and Russo-type formula for the new definition. As a consequence, we establish a sharp threshold phenomenon for monotone increasing events in the product Gaussian space with respect to the mean parameter and give a statistical application of it. We also obtain isoperimetric inequality for the Gaussian measure on Rn and the class of sets invariant under transitive permutation group of the coordinates.
机译:在本文的第一部分,我们分析了随着树的大小变大,各种随机树的邻接矩阵的特征值。我们显示,随着顶点数量达到无穷大,许多随机树模型的经验光谱分布收敛到确定性(模型相关)极限。我们的证明对随机树的集合使用适当的局部弱收敛概念,这被称为概率条纹收敛。我们得出结论,例如线性优先依附模型,随机递归树和均匀随机树之类的集合,其极限频谱分布具有一组实线密集的原子。我们采用Karp-Sipser算法的简化版本,以通过经验谱测度获得分配给零的质量的下界。对于参数a> -1的线性优先依恋模型,我们表明,对于任何固定的k,在适当调整尺度后,k个最大特征值在分布上会合收敛到一个非平凡的极限。; Arratia的一个著名结果表明,一个可以提出严格的概念,即在实线的任意闭合子集的每个点处开始独立的布朗运动,然后通过要求粒子在碰撞时聚结来建立定值过程。 Arratia指出,此过程的值几乎肯定在所有正时都是局部有限集,而如果初始值很紧凑,则几乎可以肯定是有限集。在本论文的第二部分中,我们研究了当基础过程不是实线上的布朗运动而是以下两个自相似过程之一时的集值凝聚过程:Sierpinski垫圈上的布朗运动和稳定过程。实线上的过程中,稳定索引大于1。我们证明了Arratia的结论对于这两个例子仍然有效。最后,在本论文的第三部分和最后一部分中,我们给出了布尔函数对连续分布乘积空间的影响的新定义。我们的定义是几何的,对于单调集,它等于就均匀放大而言的边界量度。我们证明了新定义的Kahn-Kalai-Linial(KKL)界线和Russo型公式的类似物。结果,我们针对平均参数建立了积高斯空间中单调递增事件的尖锐阈值现象,并对其进行了统计应用。我们还获得了Rn的高斯测度和坐标的传递置换群下的不变集集类的等距不等式。

著录项

  • 作者

    Sen, Arnab.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Mathematics.;Statistics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号