首页> 外文学位 >Three-dimensional reconstruction of coronary arteries from angiographic sequences for interventional assistance.
【24h】

Three-dimensional reconstruction of coronary arteries from angiographic sequences for interventional assistance.

机译:从血管造影序列对冠状动脉进行三维重建,以进行介入治疗。

获取原文
获取原文并翻译 | 示例

摘要

The main objective of this work is to implement novel techniques necessary to extract and use the information contained in single plane angiographic sequences in order to develop a potential tool to assist the cardiologist concurrently during the procedure. Two specific hypotheses will need to be verified to justify our main research objectives. The first hypothesis states that the integration of a geometrical curvature constraint improves the precision of the point correspondence and improves reconstruction accuracy whereas the second hypothesis states that it is possible to recuperate the 3D geometry across a single plain angiographic sequence, for clinical assistance, by using an a priori 3D model of the structure of interest.;Recalling that the cardiologist usually makes use of a single plane angiographic view by looking at the X-ray fluoroscopy monitor during interventions, it would be advantageous to reconstruct the arteries in 3D using one view. Thus, we suppose that an a priori 3D model of the arteries is obtained and available at a first time instant. The model can be obtained from a biplane reconstruction before the intervention, or from preoperative data, such as an MRI or MDCT dataset, which are the registered thereafter in the coordinate frame of the fluoroscope during a procedure. The monoplane equations developed optimize for the unknown 3D displacements in subsequent time instants of the angiographic dataset. A clinical experiment was performed using arrhythmia data. The aim is to estimate the depth of the tip electrode of the ablation catheter in 20 distinct datasets. For a posterior/anterior view, the 3D mean and maximum depth errors were 2.68mm and 7.05mm, whereas for a left-right anterior oblique setup the 3D mean and maximal errors were 2.34mm and 5.84mm respectively.;In conclusion, our research work helped verify the two hypotheses outlined above. In order to develop a potential tool to assist the cardiologist during angioplasty procedures primarily (i.e. catheter ablation procedures may be targeted as well), we developed solutions that consider and extract the spatio-temporal information from X-ray images acquired by the fluoroscope. We implemented a two-click process that extracts the coronary artery centerline in the diastolic image and that is tracked temporally using all images representing an entire cardiac cycle. The 3D reconstruction obtained using a biplane setup was optimized by considering a novel geometric curvature constraint when choosing point correspondences. Single plane reconstruction is made possible if an a priori 3D model of the targeted structure is available at a 1 st time instant in the angiographic images. Subsequent estimates of the 3D structure are obtained by considering the spatial coordinates and displacements of the arteries as well. Future work should focus on including non-rigid constraint equations to consider the inherent movement of the heart. Other geometrical constraints such as length preservation terms and 3D perpendicularity constraints between normals and tangents could be exploited to improve results using a single view. (Abstract shortened by UMI.).;We implemented a novel automatic 2D segmentation algorithm to enhance healthy or diseased (stenosis) coronary arteries in a first image representing the diastolic cardiac phase. A 4-step filter, that included a homomorphic, anisotropic, shock filter and morphological component systematically suppressed the background and enhanced only the arteries. Then, we provide the cardiologist with the ability to target a specific coronary artery and investigate its motion by extracting its 2D centerline and automatically temporal tracking it across all the angiographic images in a cardiac cycle. A two click Fast Marching Method for the centerline extraction phase, whereas a gradient vector flow (GVF) active contour model coupled with a pyramidal Optical Flow approach is used for the temporal tracking procedure. These tools lead towards the reconstruction process of a targeted coronary artery. Valid 3D reconstruction relies on the successful correspondence of appropriate landmarks obtained from the arteries through a set of angiographic images. By introducing a novel curvature constraint that relates 2D-3D coronary curvature, we aim at reconstructing structures that undergo mainly rigid motion, since if this is the case, the structure would not undergo contractility and hence would have similar curvature between its 3D geometry and its projected shape in the 2D images. The proposed algorithms were validated by using 5 consecutive biplane image pairs, we obtain the following research results: for a posterior/anterior view, the 3D RMS improves from 2.8mm to 1.1mm, whereas for a left-right anterior oblique setup the 3D RMS improves from 3.1mm to 1.9mm using our geometric curvature constraint.
机译:这项工作的主要目的是实施必要的新颖技术,以提取和使用包含在单平面血管造影术序列中的信息,以便开发一种在手术过程中同时协助心脏病专家的潜在工具。需要验证两个特定的假设以证明我们的主要研究目标是正确的。第一个假设指出,几何曲率约束的积分提高了点对应的精度并提高了重建精度,而第二个假设指出,可以通过使用以下方法在单个普通血管造影序列上调理3D几何形状,以提供临床帮助回想一下心脏病专家通常在介入过程中通过查看X射线透视检查仪来利用单平面血管造影视图,使用一个视图以3D重建动脉将是有利的。因此,我们假设获得了动脉的先验3D模型,并且该模型在第一时刻可用。可以从介入前的双翼重建或手术前的数据(例如MRI或MDCT数据集)中获取模型,然后在手术过程中将其记录在荧光镜的坐标系中。开发的单平面方程针对血管造影数据集的后续时间中的未知3D位移进行了优化。使用心律不齐数据进行临床实验。目的是在20个不同的数据集中估算消融导管末端电极的深度。对于后/前视图,3D平均值和最大深度误差分别为2.68mm和7.05mm,而对于左右前斜角装置,其3D平均值和最大误差分别为2.34mm和5.84mm。这项工作有助于验证上述两个假设。为了开发一种潜在的工具来主要在血管成形术过程中为心脏病专家提供帮助(即也可以针对导管消融术),我们开发了一种解决方案,可以考虑并从荧光镜获得的X射线图像中提取时空信息。我们实施了两次单击过程,以提取舒张图像中的冠状动脉中心线,并使用代表整个心动周期的所有图像在时间上进行跟踪。在选择点对应关系时,通过考虑新颖的几何曲率约束来优化使用双翼飞机设置获得的3D重建。如果在血管造影图像中的第一时刻可获得目标结构的先验3D模型,则可以进行单平面重建。通过考虑动脉的空间坐标和位移,可以获得3D结构的后续估计。未来的工作应着眼于包括非刚性约束方程式,以考虑心脏的固有运动。可以利用其他几何约束(例如,长度保留项以及法线和切线之间的3D垂直约束)来改善单个视图的结果。 (摘要由UMI缩短。);我们实施了一种新颖的自动2D分割算法,以在代表舒张期心脏相位的第一张图像中增强健康或患病(狭窄)的冠状动脉。包含同构,各向异性,冲击滤波器和形态成分的4步滤镜系统地抑制了背景并仅增强了动脉。然后,我们为心脏病专家提供了针对特定冠状动脉的能力,并通过提取2D中心线并在整个心动周期中自动对所有血管造影图像进行时间跟踪来调查其运动。对于中心线提取阶段,单击两步快速行进方法,而将梯度矢量流(GVF)活动轮廓模型与金字塔光流方法相结合,则用于时间跟踪过程。这些工具导致目标冠状动脉的重建过程。有效的3D重建依赖于通过一组血管造影图像从动脉获得的适当界标的成功对应。通过引入与2D-3D冠状动脉曲率相关的新颖曲率约束,我们的目标是重建主要经历刚性运动的结构,因为如果是这种情况,该结构将不会发生收缩,因此在其3D几何形状与其几何形状之间将具有相似的曲率在2D图像中投影形状。通过使用5个连续的双平面图像对对提出的算法进行了验证,我们获得了以下研究结果:对于后/前视图,3D RMS从2.8mm提高到1.1mm,而对于左右前斜角设置,则3D RMS使用我们的几何曲率约束,从3.1mm提高到1.9mm。

著录项

  • 作者

    Fallavollita, Pascal.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Biomedical engineering.;Computer science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号