首页> 外文学位 >Conception de couches minces tribologiques pour augmenter la resistance a l'erosion par impacts de particules.
【24h】

Conception de couches minces tribologiques pour augmenter la resistance a l'erosion par impacts de particules.

机译:薄的摩擦层设计,可提高抗微粒撞击的能力。

获取原文
获取原文并翻译 | 示例

摘要

Solid particle erosion (SPE) is a serious problem in gas turbines, pumps, heat exchangers and piping systems in aircrafts and other applications. Sand and dust ingested by gas turbine engines may cause major damage to compressor gas path components, leading to severe performance degradation, excessive wear, increased maintenance and eventually premature failure of the engines.;The present work focuses on the use of advanced finite element (FE) methods to design erosion resistant (ER) coatings. It contributes a new methodology based on the analysis of transient stresses generated by a single impact event. Identification of coating architectures in which such stresses are minimized and crack propagation suppressed, allows one to predict and possibly minimize the erosion rate. Erosion mechanisms and governing erosion parameters are investigated to predict the coating behavior in simulated erosion conditions. The calculation variables include impact velocity (in the range of 50--300 m/s), particle size and the mechanical properties of both the target and the impacting particle. Specifically, we investigate the impact response of coatings fabricated by physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). This includes single and multilayer TiN and nanocomposite nc-TiN/a-SiN1.3 and nc-TiCN/a-SiCN systems on titanium alloy and stainless steel substrates. In particular, we correlate the thickness and the coating macroscopic properties, such as hardness, Young's modulus, and toughness with the erosion. The calculations confirmed earlier findings that for a single layer coating, a combination of low modulus and a high thickness lead to local stress reduction and hence possible erosion resistance enhancement. The FE simulations have further shown that a tensile stress exceeding a critical stress sigmacrit = 3.95 GPa can be easily produced by a single particle impact. For each combination of particle velocity and size, a map of tensile stresses in the TiN coating, corresponding to the predicted erosion performance, was produced. The FE model has then been extended to multilayer coating systems containing superhard nanocomposite materials. These coatings configurations, when combined with tailored mechanical properties have shown to provide an improvement of the performance over comparable single layer configurations.;The development of high performance erosion-resistant coatings also requires understanding of stress propagation upon particle impact. In the second part of this work, we apply a finite element methodology to enhance and optimize the resistance of protective coatings to erosion by solid particles with appropriate stress management. A controlled distribution of the initial residual stress in the coating was used to counteract impact stress, while a Young's modulus distribution was applied to optimize impact energy spreading throughout the coating system. Considering both tensile stress reduction and energy absorption, a multi-layer configuration with specific Young's modulus and residual stress distributions along the coating depth is suggested as an optimal coating architecture.;In the third part of this work, we propose practical semi-empirical and numerical predictive methods to determine erosion resistance of tribological coatings. The study presents data obtained by FE calculations that can be compared with those obtained by classical theories developed for the erosion of materials. The simulation-based approach allows one to express the functional dependence of erosion on the coating properties, and to quantitatively predict the erosion rate. We determined a proportionality coefficient for a wide range of hard coatings. This coefficient was then used, in combination with the semi-empirical expression derived from FE simulations, to determine the erosion rate of different coatings. The existing erosion theories tend to emphasize hardness, H, and Young's modulus, E, as the main parameters defining erosion resistance. In this context, we specifically focus here on the role of the H/E and H3/E 2 ratios. We demonstrate that the latter characteristics allow one to rank coatings with respect to their erosion performance. Target values for these two ratios were determined for an optimal erosion resistance. We demonstrate that the FE design of the coating architecture, combined with the tailored mechanical properties of individual components of the coating systems, opens new opportunities as a predictive tool for high performance erosion coatings.;For the compressor section of aerospace gas turbine engines, in addition to the complex filtration systems used to screen the eroding particles, tribological coatings, such as TiN, Ti/TiN, CrN and TiAlN are used as protective layers of the base titanium alloy (Ti-6Al-4V) or stainless steels (17-4PH and 410) materials (substrates) against erosive wear. Such coatings can extend the service life of the components, but their performance still remains insufficient due to the complexity of failure mechanisms occurring upon SPE. Therefore, aerospace industry seeks to develop high performance coatings for the protection against erosion by solid particles. However, with many new materials used and tested for different applications and operation under different conditions, conducting experiments for each one of them is becoming increasingly difficult. Presently, coating selection criteria to prevent damage caused by erosion are based on trial and error experiments instead of prior design of coating's architecture and properties to maximize erosion resistance.;The present thesis also includes a complementary experimental study of a new kind of ER coatings. We modify the surface profile of hard coatings such as diamond like carbon (DLC) and chrome silicon nitride CrSiN in attempt to correlate the surface characteristics to the functional performance. A specific surface texture (or pattern), designed to enhance erosion resistance, was obtained using a simple and cost effective method consisting of a masking operation, followed by conventional film fabrication techniques PVD or PECVD. Micro-patterned coatings (MPC) possessing specific 3D profiles were produced. In addition to a high potential for several tribological applications, MPC allowed to provide erosion resistance enhancement by a factor of 30 compared to the non-coated stainless steel and of 3--5 times compared to that of the same coating without micro pattern.
机译:固体颗粒腐蚀(SPE)在飞机和其他应用中的燃气轮机,泵,热交换器和管道系统中是一个严重的问题。燃气涡轮发动机吸入的沙尘可能会严重损坏压缩机气路部件,从而导致严重的性能下降,过度磨损,增加的维护并最终导致发动机过早失效。;本工作着眼于高级有限元的使用( FE)设计抗腐蚀(ER)涂层的方法。它基于对单个冲击事件产生的瞬态应力的分析,提供了一种新的方法。对涂层结构的识别可以最大程度地预测腐蚀速率,并且可以将腐蚀速率最小化,在涂层结构中将此类应力降至最低并抑制裂纹扩展。研究了腐蚀机理和控制腐蚀的参数,以预测在模拟腐蚀条件下的涂层行为。计算变量包括撞击速度(在50--300 m / s范围内),粒径以及目标和撞击粒子的机械性能。具体来说,我们研究了通过物理气相沉积(PVD)和等离子体增强化学气相沉积(PECVD)制造的涂层的冲击响应。这包括在钛合金和不锈钢基板上的单层和多层TiN和纳米复合nc-TiN / a-SiN1.3和nc-TiCN / a-SiCN系统。特别是,我们将厚度和涂层的宏观性能(例如硬度,杨氏模量和韧性)与腐蚀相关联。计算结果证实了较早的发现,对于单层涂层,低模量和高厚度的组合会导致局部应力降低,从而可能增强耐蚀性。有限元模拟还表明,单颗粒撞击很容易产生超过临界应力σ= 3.95 GPa的拉伸应力。对于颗粒速度和尺寸的每种组合,将生成TiN涂层中的拉伸应力图,该图对应于预测的腐蚀性能。然后,FE模型已扩展到包含超硬纳米复合材料的多层涂层系统。这些涂料配置与定制的机械性能结合使用时,已显示出与同类单层配置相比性能的提高。高性能耐腐蚀涂料的开发还需要了解粒子撞击时的应力传播。在这项工作的第二部分中,我们将应用有限元方法,通过适当的应力管理来增强和优化保护涂层对固体颗粒侵蚀的抵抗力。涂层中初始残余应力的受控分布用于抵消冲击应力,而杨氏模量分布用于优化冲击能量在整个涂层系统中的分布。考虑到拉伸应力的降低和能量的吸收,建议采用沿杨氏模量和沿涂层深度的残余应力分布的多层结构作为最佳涂层体系。在第三部分,我们提出了实用的半经验和确定摩擦涂层抗腐蚀性能的数值预测方法。这项研究提出了通过有限元计算获得的数据,可以将这些数据与通过针对材料侵蚀开发的经典理论获得的数据进行比较。基于模拟的方法可以表达腐蚀对涂层性能的功能依赖性,并定量预测腐蚀速率。我们确定了各种硬涂层的比例系数。然后,将该系数与从有限元模拟得出的半经验表达式结合起来,用于确定不同涂层的腐蚀速率。现有的腐蚀理论倾向于强调硬度H和杨氏模量E作为定义耐蚀性的主要参数。在这种情况下,我们在这里特别关注H / E和H3 / E 2比的作用。我们证明了后者的特性可以使涂料在其腐蚀性能方面排名。确定这两个比率的目标值以获得最佳的耐蚀性。我们证明了涂层结构的有限元设计与涂层系统各个组件的定制机械性能相结合,为高性能腐蚀涂层的预测工具开辟了新的机会。除了用于筛选侵蚀颗粒的复杂过滤系统之外,摩擦涂层(例如TiN,Ti / TiN,CrN和TiAlN)还用作基础钛合金(Ti-6Al-4V)或不锈钢的保护层(17- 4PH和410)材料(基材)抗腐蚀磨损。这样的涂层可以延长组件的使用寿命,但是由于SPE上发生故障机制的复杂性,它们的性能仍然不足。因此,航空航天工业寻求开发用于防止固体颗粒腐蚀的高性能涂层。然而,随着许多新材料用于不同的应用和在不同的条件下进行测试,对它们中的每一种进行实验变得越来越困难。目前,防止腐蚀造成的损伤的涂层选择标准是基于试验和错误实验,而不是基于先前设计的涂层的结构和性能以最大程度地提高耐蚀性。;本论文还包括对新型ER涂层的补充实验研究。我们尝试修改硬涂层的表面轮廓,例如类金刚石碳(DLC)和氮化铬铬硅CrSiN,以使表面特性与功能性能相关联。使用简单且具有成本效益的方法(包括掩膜操作),再使用常规的薄膜制造技术PVD或PECVD,可以获得旨在提高耐蚀性的特定表面纹理(或图案)。制作了具有特定3D轮廓的微图案涂层(MPC)。除了在多种摩擦学应用中具有很高的潜力外,MPC还可以使耐蚀性比未镀膜的不锈钢提高30倍,比不带微图案的相同涂层的耐蚀性提高3--5倍。

著录项

  • 作者

    Hassani, Salim.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 213 p.
  • 总页数 213
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:47

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号