首页> 外文学位 >Spin-Orbit Coupling in Graphene and Transition Metal Dichalcogenides
【24h】

Spin-Orbit Coupling in Graphene and Transition Metal Dichalcogenides

机译:石墨烯和过渡金属二硫属化物中的自旋轨道耦合。

获取原文
获取原文并翻译 | 示例

摘要

Graphene stands out for its high mobility and weak spin-orbit coupling (SOC) offering efficient transport of both electron charges and spins. However, the negligible SOC prevents novel quantum states from emerging, such as the quantum anomalous Hall state. On the other hand, owing to their strong SOC, transition metal dichalcogenides (TMDs) provide an ideal platform to increase the SOC in graphene by proximity effect. This dissertation will focus on the analysis of the induced SOC in graphene, the underlying mechanisms, and the factors that could affect its strength.;The first part briefly introduces graphene and SOC. We present possible ways to increase the SOC in graphene and how to quantify its strength. The second part shows the procedures on how to build a van der Waals heterostructure like graphene/WSe2/h-BN, followed by introductions to Raman and photoluminescence (PL).;In the third part we demonstrate enhanced SOC in monolayer and bilayer graphene on WS2 by magneto-conductance measurements. We will show clear weak antilocalization (WAL) in WS2-covered graphene over a wide range of carrier densities. We isolate and quantify the spin-relaxation rate caused by Rashba SOC and show its strength is tunable via transverse electric fields.;Then we investigate the SOC in graphene coupled to monolayer TMD films. We show that the spin relaxation rate varies linearly with the momentum scattering time and is independent of the carrier type. Our analysis yields a Rashba SOC of ∼1.5 meV in graphene/WSe2 and ∼0.9 meV in graphene/MoS 2. The nearly electron-hole symmetric nature of the Rashba SOC calls deeper understanding for the underlying mechanisms.;Finally, we study the interactions between TMDs and graphene in graphene/WSe 2/h-BN and WSe2/ graphene/h-BN. We find that strong PL quenching exists in the former stack while the PL is only weakly quenched in the latter stack. We attribute this difference to the increased interlayer distance between WSe2 and graphene caused by the h-BN, as evidenced by the reduced WAL and the first principles calculations.
机译:石墨烯因其高迁移率和弱自旋轨道耦合(SOC)而著称,可有效传输电子电荷和自旋。但是,可忽略的SOC可以防止出现新的量子态,例如量子异常霍尔态。另一方面,由于其强大的SOC,过渡金属二卤化物(TMD)提供了理想的平台,可通过邻近效应增加石墨烯中的SOC。本文主要研究石墨烯诱导的SOC,分析其机理以及影响其强度的因素。第一部分简要介绍了石墨烯和SOC。我们提出了增加石墨烯中SOC的可行方法以及如何量化其强度。第二部分展示了如何构建范德华异质结构(如石墨烯/ WSe2 / h-BN)的过程,然后介绍了拉曼光谱和光致发光(PL)。第三部分展示了单层和双层石墨烯中增强的SOC。 WS2通过磁导测量。我们将在广泛的载流子密度范围内,在WS2覆盖的石墨烯中显示出明显的弱反定位(WAL)。我们分离并量化了由Rashba SOC引起的自旋弛豫速率,并显示其强度可通过横向电场调节。;然后,我们研究了与单层TMD膜耦合的石墨烯中的SOC。我们表明,自旋弛豫率随动量散射时间线性变化,并且与载流子类型无关。我们的分析得出,石墨烯/ WSe2中的Rashba SOC约为1.5meV,石墨烯/ MoS 2中的Rashba SOC约为0.9meV。RashbaSOC的几乎电子-空穴对称性质要求更深入地了解其潜在机理。在石墨烯/ WSe 2 / h-BN和WSe2 /石墨烯/ h-BN中的TMDs和石墨烯之间。我们发现前者堆栈中存在强PL淬灭,而后者堆栈中PL仅弱淬灭。我们将这种差异归因于h-BN导致WSe2和石墨烯之间的层间距离增加,这由减少的WAL和第一原理计算所证明。

著录项

  • 作者

    Yang, Bowen.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号