首页> 外文学位 >Synthesis of Graphene and Two-Dimensional Transitional Metal Dichalcogenides and Their Optical Properties
【24h】

Synthesis of Graphene and Two-Dimensional Transitional Metal Dichalcogenides and Their Optical Properties

机译:石墨烯和二维过渡金属二硫属元素化物的合成及其光学性质

获取原文
获取原文并翻译 | 示例

摘要

Since the first isolation of graphene from graphite in 2004, there has been a significant amount of research dedicated to two-dimensional (2D) materials. Graphene is arguably the most famous material which displays remarkable mechanical, thermal and optical properties. However, its lack of an electronic bandgap, limits its application in many areas. Transition metal dichalcogenides (TMDs) such as WSe2, WS2, and MoS2 are another kind of 2D material with semiconducting character. Its direct band-gap feature and favorable electronic and mechanical properties, complement graphene, leading to applications in high-end electronic and optoelectronic applications. This dissertation explores the optical properties of these 2D materials by Raman spectroscopy and their potential applications in molecular sensing have been explored.;Chapter 1 provides a brief introduction of various 2D materials, including graphene and TMDs. Crystal structure as well as electronic band structures for these materials have been introduced together with some potential applications of the 2D materials.;Chapter 2 gives an introduction on Raman spectroscopy. As one of the heavily used characteristic techniques to probe the optical properties of 2D materials, Raman scattering processes are studied from both macroscopic and microscopic approaches. In addition, normal Raman spectra of 2D materials are measured and by analyzing the Raman spectra, various information about the sample, such as crystallinity, thickness, doping and strain could be obtained indicating Raman can serve as a powerful tool to study properties of 2D materials.;In chapter 3, nitrogen-doped (NG) and silicon-doped (SiG) graphene are successfully synthesized through a chemical vapor deposition (CVD) setup. A variety of techniques, including transmission electron microscopy (TEM), scanning tunneling microscopy and spectroscopy (STM/STS), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy are used to characterize the sample and discover how nitrogen and silicon atoms are incorporated into the graphene lattice.;Chapter 4 demonstrates that when graphene monolayers are used as substrates to probe the Raman signal of various dye molecules, such as rhodamine B (RhB), crystal violet (CRV) and methylene blue (MB), intensities of the Raman signals from the dye molecules enhance a lot, giving the term as graphene-enhanced Raman scattering effect (GERS). In addition, NG exhibits an extraordinary sensing properties when compared to PG sheets. For example, the Raman vibrational modes of these particular dye molecules can be detected for concentrations as low as 10-11 mol/L and very close to single molecule detection limit. This is the lowest ever reported value when using graphene as a substrate so far. Electronic structure calculations and the simulation of the Raman spectra, performed by our collaborator Dr. Maria Cristina dos Santos from Brazil, suggests that a charge transfer excitation and the proper aligning of the HOMO-LUMO gap of the molecules with respect to the Fermi level of graphene are the key reasons for this enhancement..;Chapter 5 demonstrated that Raman spectroscopy could be a significant tool to study 2D materials by two simple examples. By applying polarized Raman techniques, a new Raman active peak, which is associated with first-order out-of-plane vibrational mode in TMDs is observed. Further experiments and calculations demonstrate that this peak only exist in few layer TMDs materials and does not show in monolayer or bulk samples. The unique property of this mode could potentially provide an easy method to distinguish monolayer TMDs sample just by Raman measurements. Another example is that a monodispersed, flower-like MoSe2 nanostructures have been synthesized by colloidal methods by our collaborator (Dr. Shaack's group). This 3D structure contains 2D-quasi-like MoSe2 nanosheets that protrude outwards from a dense central core. Laser power dependent Raman and temperature dependent Raman measurements demonstrate that the interlayer decoupling of these nanosheets could be easily tuned, providing insights on how to modulate the optical properties of TMD materials.;Finally, chapter 6 summarizes the studies discussed in this dissertation and provide some perspectives to the potential future works.
机译:自2004年首次从石墨中分离出石墨烯以来,已有大量研究致力于二维(2D)材料。石墨烯可以说是最著名的材料,它显示出显着的机械,热和光学性能。但是,它缺乏电子带隙,限制了它在许多领域的应用。诸如WSe2,WS2和MoS2之类的过渡金属二硫化碳(TMD)是另一种具有半导体特性的二维材料。它具有直接的带隙特性和良好的电子和机械性能,可与石墨烯互补,从而可应用于高端电子和光电应用。本文通过拉曼光谱研究了这些二维材料的光学性质,并探讨了它们在分子传感中的潜在应用。第一章简要介绍了各种二维材料,包括石墨烯和TMDs。已经介绍了这些材料的晶体结构以及电子能带结构以及2D材料的一些潜在应用。第二章介绍了拉曼光谱。作为探查2D材料光学特性的常用特征技术之一,从宏观和微观方法研究拉曼散射过程。另外,测量二维材料的正常拉曼光谱,并通过分析拉曼光谱,可以获得有关样品的各种信息,例如结晶度,厚度,掺杂和应变,这表明拉曼可以用作研究二维材料特性的有力工具。在第三章中,通过化学气相沉积(CVD)装置成功地合成了氮掺杂(NG)和硅掺杂(SiG)石墨烯。包括透射电子显微镜(TEM),扫描隧道显微镜和光谱学(STM / STS),X射线光电子能谱(XPS)和拉曼光谱在内的多种技术可用于表征样品并发现氮和硅原子如何结合第4章证明,当石墨烯单层用作底物以探测各种染料分子(如若丹明B(RhB),结晶紫(CRV)和亚甲基蓝(MB))的拉曼信号时,其强度来自染料分子的拉曼信号增强很多,因此称为石墨烯增强拉曼散射效应(GERS)。此外,与PG板材相比,NG表现出非凡的感测性能。例如,可以检测低至10-11 mol / L的浓度且非常接近单分子检测极限的这些特定染料分子的拉曼振动模式。这是迄今为止使用石墨烯作为基材的最低值。我们的合作者来自巴西的Maria Maria Cristina dos Santos博士进行了电子结构计算和拉曼光谱模拟,表明电荷转移激发和分子HOMO-LUMO间隙相对于费米能级的正确排列。石墨烯是实现这种增强的主要原因。第5章通过两个简单的例子证明了拉曼光谱学可能是研究2D材料的重要工具。通过应用极化拉曼技术,可以观察到一个新的拉曼活性峰,该峰与TMD中的一阶面外振动模式有关。进一步的实验和计算表明,该峰仅存在于几层TMDs材料中,而在单层或块状样品中不存在。此模式的独特属性可能会提供一种简单的方法,仅通过拉曼测量即可区分单层TMD样品。另一个例子是我们的合作者(Shaack博士的研究小组)通过胶体方法合成了单分散的,花状的MoSe2纳米结构。这种3D结构包含从密集的中心核向外突出的2D准类MoSe2纳米片。依赖于激光功率的拉曼和依赖温度的拉曼测量表明,这些纳米片的层间去耦很容易调节,从而为如何调制TMD材料的光学特性提供了见识。最后,第6章总结了本文所讨论的研究并提供了一些建议。对潜在的未来作品的看法。

著录项

  • 作者

    Feng, Simin.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Condensed matter physics.;Physics.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号