首页> 外文学位 >HpTx2 gating modification involves distinct amino acids in S3b region of Kv4.
【24h】

HpTx2 gating modification involves distinct amino acids in S3b region of Kv4.

机译:HpTx2门控修饰涉及Kv4的S3b区中的不同氨基酸。

获取原文
获取原文并翻译 | 示例

摘要

Kv4 channels are responsible for many of the fast-inactivating potassium currents found in cardiovascular, neural, and smooth muscle tissues. Kv4 channels are selectively inhibited by HpTx2, an inhibitor cysteine knot (ICK) gating modifier toxin. It is the goal of this study to understand how HpTx2 modifies gating of Kv4 channels by finding the binding and specificity determinants, and the basis for the difference in voltage-dependent gating modification among Kv4 subtypes. The binding site for HpTx2 on Kv4.3 was found by alanine scanning mutagenesis of the S3b-S4 linker region. L275A and V276A mutants decreased HpTx2 inhibition of Kv4.3; the double mutant eliminated inhibition, showing that the binding site for HpTx2 is LV275. The specificity determinants for HpTx2 with Kv4.3 were also examined. HaTx modifies gating of Kv4 and Kv2 channels; whereas HpTx2 specifically modifies gating of Kv4 channels. To find the specificity determinants, the S3b region of Kv4.3 was mutated to amino acids in S3b of Kv2.1. The LV275 binding site of Kv4.3 was mutated to amino acids of the homologous site IF275 in Kv2.1, where HaTx binds. HpTx2 modified gating of Kv4.3 LV275IF similar to the wild-type channel. These results suggest that binding determinants of HpTx2 are shared with other ICK toxins. The size of the S3-S4 linker in Kv2.1 is 7 amino acids larger than Kv4.3. Swapping the linker region of Kv2.1 into Kv4.3 eliminated the ability of HpTx2 to modify gating of Kv4.3. This showed that linker size determines specificity of HpTx2 in modifying gating of Kv4.3. HpTx2 modifies gating of Kv4.3 in a strongly voltage-dependent manner compared to Kv4.1. The molecular basis of the difference in gating modification is due to four amino acids in S3b. Activation models including toxin-bound states were developed. The models closely follow the experimental data and predict a difference in closed-state occupancy as being responsible for the differences in voltage-dependent gating modification.
机译:Kv4通道负责在心血管,神经和平滑肌组织中发现的许多快速失活的钾电流。 Kv4通道被HpTx2(抑制剂半胱氨酸结(ICK)门控修饰剂毒素)选择性抑制。这项研究的目的是了解HpTx2如何通过发现结合和特异性决定因素来修饰Kv4通道的门控,以及了解Kv4亚型之间电压依赖性门控修饰的差异的基础。通过S3b-S4接头区域的丙氨酸扫描诱变发现了Kv4.3上HpTx2的结合位点。 L275A和V276A突变体可降低HpTx2对Kv4.3的抑制作用;双突变体消除了抑制作用,表明HpTx2的结合位点是LV275。还检查了Kv4.3对HpTx2的特异性决定因素。 HaTx修改了Kv4和Kv2通道的门控;而HpTx2专门修改Kv4通道的门控。为了找到特异性决定因素,将Kv4.3的S3b区突变为Kv2.1的S3b中的氨基酸。 Kv4.3的LV275结合位点突变为Havx结合的Kv2.1中同源位点IF275的氨基酸。 HpTx2修饰的Kv4.3 LV275IF的门控类似于野生型通道。这些结果表明,HpTx2的结合决定簇与其他ICK毒素共有。 Kv2.1中S3-S4接头的大小比Kv4.3大7个氨基酸。将Kv2.1的连接子区域交换为Kv4.3,消除了HpTx2修饰Kv4.3的门控的能力。这表明接头大小决定了HpTx2在修饰Kv4.3的门控中的特异性。与Kv4.1相比,HpTx2以强烈的电压依赖性方式修饰Kv4.3的门控。门控修饰差异的分子基础是S3b中的四个氨基酸。开发了包括毒素结合状态的激活模型。这些模型紧密跟随实验数据,并预测在闭合状态下的占用差异是造成电压相关门控修改差异的原因。

著录项

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Biology Physiology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号