首页> 外文学位 >Application of stochastic processes in random growth and evolutionary dynamics.
【24h】

Application of stochastic processes in random growth and evolutionary dynamics.

机译:随机过程在随机增长和进化动力学中的应用。

获取原文
获取原文并翻译 | 示例

摘要

We study the effect of power-law distributed randomness on the dynamical behavior of processes such as stochastic growth patterns and evolution.;First, we examine the geometrical properties of random shapes produced by a generalized stochastic Loewner Evolution driven by a superposition of a Brownian motion and a stable Levy process. The situation is defined by the usual stochastic Loewner Evolution parameter, kappa, as well as alpha which defines the power-law tail of the stable Levy distribution. We show that the properties of these patterns change qualitatively and singularly at critical values of kappa and alpha. It is reasonable to call such changes "phase transitions". These transitions occur as kappa passes through four and as alpha passes through one. Numerical simulations are used to explore the global scaling behavior of these patterns in each "phase". We show both analytically and numerically that the growth continues indefinitely in the vertical direction for alpha greater than 1, goes as logarithmically with time for alpha equals to 1, and saturates for alpha smaller than 1. The probability density has two different scales corresponding to directions along and perpendicular to the boundary. Scaling functions for the probability density are given for various limiting cases.;Second, we study the effect of the architecture of biological networks on their evolutionary dynamics. In recent years, studies of the architecture of large networks have unveiled a common topology, called scale-free, in which a majority of the elements are poorly connected except for a small fraction of highly connected components. We ask how networks with distinct topologies can evolve towards a pre-established target phenotype through a process of random mutations and selection. We use networks of Boolean components as a framework to model a large class of phenotypes. Within this approach, we find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. While homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously towards the target phenotype. Moreover, we show that scale-free networks always evolve faster than homogeneous random networks; remarkably, this property does not depend on the precise value of the topological parameter. By contrast, homogeneous random networks require a specific tuning of their topological parameter in order to optimize their fitness. This model suggests that the evolutionary paths of biological networks, punctuated or continuous, may solely be determined by the network topology.
机译:我们研究了幂律分布随机性对过程动力学行为(例如随机增长模式和演化)的影响。首先,我们研究了由布朗运动叠加驱动的广义随机Loewner演化产生的随机形状的几何特性。以及稳定的征费流程。这种情况由通常的随机Loewner Evolution参数kappa以及定义稳定Levy分布的幂律尾部的alpha定义。我们表明,这些模式的性质在kappa和alpha的临界值上发生了定性和定性变化。将此类更改称为“相变”是合理的。这些转换发生在kappa穿过4和alpha穿过一个。数值模拟用于探索每个“阶段”中这些模式的全局缩放行为。从分析和数值两个方面,我们都表明,对于大于1的alpha,在垂直方向上会无限期地增长;对于等于1的时间,对数随时间的变化对数增长;对于小于1的alpha,它的饱和度是饱和的。沿着并垂直于边界。给出了各种极限情况下概率密度的标度函数。其次,我们研究了生物网络结构对其进化动力学的影响。近年来,对大型网络体系结构的研究揭示了一种通用的拓扑结构,称为无标度,其中除少数部分高度连接的组件外,大多数元素的连接不良。我们问具有不同拓扑的网络如何通过随机突变和选择过程演变为预先建立的目标表型。我们使用布尔组件网络作为框架来对一大类表型进行建模。在这种方法中,我们发现同质随机网络和无标度网络展现出截然不同的进化路径。同质随机网络积累中性突变并通过稀疏的标点步骤进化,而无标度网络则迅速且连续地向目标表型进化。而且,我们证明了无标度网络总是比同质随机网络发展得更快。显然,此属性不依赖于拓扑参数的精确值。相反,同质随机网络需要对其拓扑参数进行特定调整,以优化其适应性。该模型表明,标点或连续的生物网络的进化路径可能仅由网络拓扑决定。

著录项

  • 作者

    Oikonomou, Panagiotis.;

  • 作者单位

    The University of Chicago.;

  • 授予单位 The University of Chicago.;
  • 学科 Biology Biostatistics.;Physics Theory.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物数学方法;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号