首页> 外文学位 >Lorentz space estimates and applied boundary current dynamics for Ginzburg-Landau.
【24h】

Lorentz space estimates and applied boundary current dynamics for Ginzburg-Landau.

机译:金茨堡-朗道的洛伦兹空间估计和应用的边界电流动力学。

获取原文
获取原文并翻译 | 示例

摘要

This thesis, which is divided into three parts, is concerned with the study of the Ginzburg-Landau energy functional in two dimensions. In the first part, we prove novel lower bounds for the Ginzburg-Landau energy with or without magnetic field. These bounds rely on an improvement of the "vortex balls construction" estimates by extracting a new positive term in the energy lower bounds. This extra term can be conveniently estimated through a Lorentz space norm, on which it thus provides an upper bound. The Lorentz space we use is critical with respect to the expected vortex profiles and can serve to estimate the total number of vortices and get improved convergence results.;The second component extends the ideas and techniques of the first to the case of the Ginzburg-Landau energy with external magnetic field hex in certain interesting regimes of hex . This allows us to show that for configurations close to minimizers or local minimizers of the energy, the vorticity mass of the configuration (u, A) is comparable to the L2,infinity Lorentz space norm of ▿Au, the covariant derivative. We also establish convergence of the gauge-invariant Jacobians (vorticity measures) in the dual of a function space defined in terms of Lorentz and Lorentz-Zygmund spaces.;For the third component, we turn to an analysis of the time-dependent Ginzburg-Landau equations, subject to an applied electric field on the boundary. The first results show that the equations are well-posed when an applied electric field is present. We continue with an analysis of the evolution of the energy for solutions, deriving various estimates. Finally, we derive the equations governing the dynamics of the system in the limit.
机译:本论文分为三个部分,主要涉及二维金兹堡-朗道能量函数的研究。在第一部分中,我们证明了有或没有磁场的Ginzburg-Landau能量的新颖下界。这些界限通过提取能量下界中的新正项来依靠“涡流球构造”估计的改进。可以通过洛伦兹空间范数方便地估计该额外项,从而在其上提供上限。我们使用的洛伦兹空间对于预期的涡旋分布至关重要,可以用来估计涡旋总数并获得改善的收敛结果。;第二个部分将第一个概念和技术扩展到了Ginzburg-Landau的情况在某些有趣的十六进制形式中具有外部磁场十六进制能量。这使我们能够证明,对于接近于能量的极小值或局部极小值的构型,构型的涡度质量(u,A)可与协变导数Δuu的L2,infinity Lorentz空间范数相媲美。我们还建立了以Lorentz和Lorentz-Zygmund空间定义的函数空间对偶中的轨距不变Jacobian(涡度度量)的收敛性。 Landau方程,受边界上施加的电场的影响。最初的结果表明,当存在外加电场时,方程式的位置正确。我们继续分析解决方案能量的演变,得出各种估计值。最后,我们得出了在极限条件下控制系统动力学的方程。

著录项

  • 作者

    Tice, Ian.;

  • 作者单位

    New York University.;

  • 授予单位 New York University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 289 p.
  • 总页数 289
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号