首页> 外文学位 >The role of DNA methylation in the expression of DNA polymerase beta in folate deficient mice.
【24h】

The role of DNA methylation in the expression of DNA polymerase beta in folate deficient mice.

机译:叶酸缺乏小鼠中DNA甲基化在DNA聚合酶β表达中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Folate deficiency (FD) is associated with cancers of the lung, cervix, pancreas, breast, colon, and liver. The underlying mechanism connecting folate deficiency to cancer remains unknown. FD induces a phenotype of single strand breaks, mutations and chromosomal instability suggestive of an inability to repair DNA damage. It is suggested that carcinogenic effect of FD are related to alterations in the methylation status of DNA due to reduction in S-adenosylmethionine (SAM) levels and/or increased uracil content of DNA. The DNA repair pathway for removal of uracil is base excision repair (BER). We have previously shown that FD results in an upregulation in Uracil DNA glycosylase (UDG) in the liver of mice with no upregulation in BER pathway and its rate limiting enzyme, DNA polymerase beta (beta-pol). Imbalance in BER capacity in FD mice has been shown to result in an accumulation in DNA repair intermediates, e.g., DNA single strand breaks and aldehydic lesions, and has been shown to be exacerbated in BER haploinsufficient mice. Here we show that FD inhibits the DNA damage inducibility of beta-pol at the level of transcription in liver in response to oxidative stress induced by treatment with 2-nitropropane, 2-NP. Thus, a direct inhibition of the BER response to carcinogens in folate deficient animals appears to be due to transcriptional repression of beta-pol gene. These data indicate that FD alters the ability of the animals to respond to deficiency. FD could alter the expression of beta-pol either through alteration in methylation status of DNA or through alteration in level and/or activity of specific regulatory factors. To elucidate the mechanism by which FD inhibits beta-pol upregulation, we analyzed the methylation status of beta-pol promoter during FD using a bisulfite genomic sequencing technique. We have shown that methylation status of exon 1 and the first 300 bases of the beta-pol promoter are not affected by FD. Since p53 regulates BER, the effect of folate deficiency on the level of p53 and methylation status of p53 CG rich exon 5-8 was also determined. FD resulted in a significant decline in the level of p53 protein however, FD did not alter the methylation status of exon 5-8 of the p53 gene. Hence, DNA methylation does not appear to be the underlying mechanism by which FD alters expression of beta-pol and BER capacity. This study shows no epigenetic changes in the promoter region of the beta-pol promoter during folate deficiency. Therefore, further investigation is needed to know the particular mechanism through which folate deficiency inhibits the expression of beta-pol.
机译:叶酸缺乏症(FD)与肺癌,子宫颈癌,胰腺癌,乳腺癌,结肠癌和肝癌有关。叶酸缺乏与癌症的潜在机制仍然未知。 FD诱导单链断裂,突变和染色体不稳定性的表型,提示不能修复DNA损伤。提示由于S-腺苷甲硫氨酸(SAM)含量降低和/或DNA尿嘧啶含量增加,FD的致癌作用与DNA甲基化状态的改变有关。用于去除尿嘧啶的DNA修复途径是碱基切除修复(BER)。我们以前已经证明FD会导致小鼠肝脏中尿嘧啶DNA糖基化酶(UDG)的上调,而BER途径及其限速酶DNA聚合酶β(beta-pol)没有上调。已证明FD小鼠BER能力的失衡会导致DNA修复中间产物的积累,例如DNA单链断裂和醛类损伤,并且已证明在BER单倍体不足的小鼠中加剧了这种情况。在这里,我们显示FD响应由2-硝基丙烷,2-NP处理引起的氧化应激,在肝脏转录水平上抑制β-pol的DNA损伤诱导性。因此,叶酸缺乏动物中对致癌物的BER反应的直接抑制似乎是由于β-pol基因的转录抑制所致。这些数据表明FD改变了动物对缺乏症作出反应的能力。 FD可以通过改变DNA的甲基化状态或通过改变特定调节因子的水平和/或活性来改变β-pol的表达。为了阐明FD抑制β-pol上调的机制,我们使用亚硫酸氢盐基因组测序技术分析了FD期间β-pol启动子的甲基化状态。我们已经表明外显子1和beta-pol启动子的前300个碱基的甲基化状态不受FD的影响。由于p53调节BER,因此还确定了叶酸缺乏对p53水平和富含p53 CG外显子5-8的甲基化状态的影响。 FD导致p53蛋白水平显着下降,但是FD并未改变p53基因外显子5-8的甲基化状态。因此,DNA甲基化似乎不是FD改变β-pol和BER容量表达的潜在机制。这项研究表明叶酸缺乏期间,β-pol启动子的启动子区域没有表观遗传学变化。因此,需要进一步研究以了解叶酸缺乏抑制β-pol表达的特定机制。

著录项

  • 作者

    Papakonstantinou, Erin.;

  • 作者单位

    Wayne State University.;

  • 授予单位 Wayne State University.;
  • 学科 Biology Genetics.Agriculture Animal Culture and Nutrition.
  • 学位 M.S.
  • 年度 2008
  • 页码 78 p.
  • 总页数 78
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号