首页> 外文学位 >Towards functional regeneration of the central nervous system: Glial calcium signaling in reactive gliosis and the therapeutic potential of bone marrow -derived mesenchymal stem cells for retinal degenerative diseases.
【24h】

Towards functional regeneration of the central nervous system: Glial calcium signaling in reactive gliosis and the therapeutic potential of bone marrow -derived mesenchymal stem cells for retinal degenerative diseases.

机译:迈向中枢神经系统的功能性再生:反应性神经胶质增生中的神经胶质钙信号传导以及骨髓源性间充质干细胞对视网膜变性疾病的治疗潜力。

获取原文
获取原文并翻译 | 示例

摘要

While great strides have been made in medicine and technology in the recent decades, satisfactory treatment of injuries and diseases in the central nervous system remain largely elusive. Neurodegenerative disorders such as Alzheimer's and Parkinson's disease as well as degenerative retinal disorders such as Age-related macular degeneration and Retinitis pigmentosa are devastating illnesses that severely affect the quality of life of patients and current therapies for them are at best symptomatic treatments. It is no doubt that effective therapeutic strategy for these diseases will require thorough knowledge of the pathogenesis of the diseases as well as development of the central nervous system to not only halt the progression of the degeneration but also repair the loss or dysfunctional tissue in order to restore cognitive functions.;Stem cells have roused great enthusiasm in recent years due to their therapeutic potential to restore function by replacing the lost or dysfunctional cell types. Bone marrow-derived mesenchymal stem cells (BMSCs) are of particular interest as somatic (adult) stem cells because of its relative ease of isolation and the minimal ethical concerns associated with its use. Numerous studies have suggested the potential of bone marrow-derived mesenchymal stem cells (BMSCs) to differentiate into cell types of all three germ layer. However, as is common with most fast growing research fields, its rapid progress to yield clinical treatments leaves many fundamental questions unanswered. Amongst them, large variations in experimental protocols make comparison of findings between different studies particularly difficult. In the studies presented here, we compare the viability and differentiation potential of BMSCs on standard surface chemistries and report the optimum growth conditions of these cells for neuronal differentiation as well as induction of neural progenitor marker in BMSCs.;In addition, recent studies in neurobiology have revealed significant functional roles of glial cells in regulating synaptic activity and information processing that were previously unappreciated. Specifically, calcium signaling has been highlighted as a potential mechanism of intra- and intercellular communication in networks of neurons and glia that is not only essential in normal physiology but may also play crucial roles in progression of degeneration in disease via processes mediated by the glia. In the studies presented here, we investigate the role of glial calcium signaling in reactive gliosis, an endogenous inflammatory response of the CNS to injury and disease that often aggravates the loss function and hampers effectively recovery. We introduce the rMC-1 Muller glia cell line as a model for studying calcium signaling and present evidence for complex signaling dynamics in intercellular calcium transient propagation within glial networks that may be altered under pathological conditions. In addition, we show that disruption of glial calcium homeostasis via altered calcium signaling dynamics directly correlates with known hallmarks of reactive astrogliosis and may play an important role in pathogenesis of neurodegenerative disease.
机译:尽管近几十年来在医学和技术上取得了长足进步,但令人满意的中枢神经系统损伤和疾病的治疗仍然遥遥无期。神经退行性疾病(例如阿尔茨海默氏病和帕金森氏病)以及变性性视网膜疾病(例如与年龄有关的黄斑变性和色素性视网膜炎)是破坏性疾病,严重影响患者的生活质量,目前的治疗方法最好是对症治疗。毫无疑问,对这些疾病的有效治疗策略将需要透彻了解疾病的发病机理以及中枢神经系统的发育,不仅可以阻止变性的进程,而且可以修复丧失或功能失调的组织,从而恢复认知功能。干细胞近年来具有极大的热情,因为它们具有治疗潜力,可以通过替代失去或功能障碍的细胞类型来恢复功能。骨髓来源的间充质干细胞(BMSC)作为体(成人)干细胞特别受关注,因为它相对容易分离,并且与其使用相关的道德问题极少。大量研究表明,骨髓间充质干细胞(BMSC)分化为所有三个胚层的细胞类型的潜力。但是,与大多数快速发展的研究领域一样,其快速发展的临床治疗方法仍未解决许多基本问题。其中,实验方案的巨大差异使得比较不同研究之间的发现特别困难。在本文介绍的研究中,我们比较了BMSC在标准表面化学上的生存力和分化潜力,并报告了这些细胞在BMSC中神经元分化和诱导神经祖细胞标记的最佳生长条件。;此外,神经生物学的最新研究已经揭示了神经胶质细胞在调节突触活动和信息处理中的重要功能,这在以前是未知的。特别地,钙信号已经被强调为神经元和神经胶质网络中细胞内和细胞间通讯的潜在机制,这不仅在正常生理中是必不可少的,而且还可能在神经胶质介导的过程中,在疾病退化中起关键作用。在这里提出的研究中,我们调查了神经胶质钙信号传导在反应性神经胶质增生中的作用,神经胶质中枢神经系统是对损伤和疾病的内源性炎症反应,通常加重丧失功能并阻碍有效的恢复。我们将rMC-1穆勒胶质细胞系作为研究钙信号传导的模型,并为神经胶质网络内细胞间钙瞬态传播中复杂信号传导动力学的证据提供了证据,这种变化可能在病理条件下发生改变。此外,我们表明,通过改变钙信号传导动力学来破坏神经胶质钙稳态,与反应性星形胶质增生的已知特征直接相关,并且可能在神经退行性疾病的发病机理中发挥重要作用。

著录项

  • 作者

    Yu, Diana Xuan.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Biomedical.;Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号