首页> 外文学位 >Stochastic analysis and differential equations with respect to fractional Brownian motion.
【24h】

Stochastic analysis and differential equations with respect to fractional Brownian motion.

机译:关于分数布朗运动的随机分析和微分方程。

获取原文
获取原文并翻译 | 示例

摘要

Stochastic analysis with respect to fractional Brownian motion. Fractional Brownian motion (fBM for short) { BHt , t ∈ R } with a Hurst index H ∈ (0, 1) is a centered Gaussian process. We study different underlying probability spaces, reproducing kernel Hilbert spaces and chaos expansions with respect to fBM. Malliavin calculus is used then to define the Skorohod integral, which is the main object throughout this thesis.;Transformations on Wiener space. We study the generalization of a fundamental theorem by Kusuoka [23] on anticipating Girsanov transformations. Roughly speaking, we study a transformations T on canonical space W into itself and we prove that the probability measure induced by such transformation is equivalent to the original one under some conditions of boundness and smoothness. Furthermore, similar to the Brownian case, one can also explicitly identify the Radon-Nikodym derivative of the two equivalent probability measures.;Stochastic differential equations driven by fBM. We study the class of one-dimensional stochastic differential equations (SDEs) driven by fractional Brownian motions with arbitrary Hurst parameter H ∈ (0, 1). In particular, the stochastic integrals appearing in the equation are defined in the Skorohod sense on fractional Wiener spaces, and the coefficients are allowed to be random, and even anticipating. By using the anticipating Girsanov transformation to transfer the original SDE into a much simpler one on the new probability space, we prove the existence and uniqueness of the solution.
机译:关于分数布朗运动的随机分析。具有赫斯特指数H∈(0,1)的分数布朗运动(简称fBM){BHt,t∈R}是居中的高斯过程。我们研究了不同的潜在概率空间,重现了内核希尔伯特空间和关于fBM的混沌扩展。然后,用Malliavin微积分定义Skorohod积分,这是贯穿本文的主要对象。Wiener空间上的变换。我们研究了Kusuoka [23]关于预期Girsanov变换的基本定理的推广。粗略地讲,我们研究了规范空间W上的变换T本身,并证明了这种变换引起的概率测度在某些有界和平滑条件下与原始变换相等。此外,类似于布朗情形,还可以显式地确定两个等效概率测度的Radon-Nikodym导数。fBM驱动的随机微分方程。我们研究由任意Hurst参数H∈(0,1)的分数布朗运动驱动的一维随机微分方程(SDE)。特别是,方程式中出现的随机积分是在分数维纳空间上的Skorohod意义上定义的,并且系数可以是随机的,甚至可以预期。通过使用预期的Girsanov变换将原始SDE转换为新概率空间上的简单得多的SDE,我们证明了该解的存在性和唯一性。

著录项

  • 作者

    Jien, Yu-Juan.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 89 p.
  • 总页数 89
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号