首页> 外文学位 >Interfaces of electrical contacts in organic semiconductor devices.
【24h】

Interfaces of electrical contacts in organic semiconductor devices.

机译:有机半导体器件中电触点的接口。

获取原文
获取原文并翻译 | 示例

摘要

Progress in organic semiconductor devices relies on better understanding of interfaces as well as material development. The engineering of interfaces that exhibit low resistance, low operating voltage and long-term stability to minimize device degradation is one of the crucial requirements. Photoelectron spectroscopy is a powerful technique to study the metal-semiconductor interfaces, allowing: (i) elucidation of the energy levels of the semiconductor and the contacts that determine Schottky barrier height, (ii) inspection of electrical interactions (such as charge transfer, dipole formation, formation of induced density of states or formation of polaron/bi-polaron states) that effect the energy level alignment, (iii) determination of interfacial chemistry, and (iv) estimation of interface morphology. In this thesis, we have used photoelectron spectroscopy extensively for detailed analysis of the metal organic semiconductor interfaces.;In this study, we demonstrate the use of photoelectron spectroscopy for construction of energy level diagrams and display some results related to chemical tailoring of materials for engineering interfaces with lowered Schottky barriers. Following our work on the energy level alignment of poly(p-phenyene vinylene) based organic semiconductors on various substrates [Au, indium tin oxide, Si (with native oxide) and Al (with native oxide)], we tested controlling the energy level alignment by using polar self assembled molecules (SAMs). Photoelectron spectroscopy showed that, by introducing SAMs on the Au surface, we successfully changed the effective work function of Au surface. We found that in this case, the change in the effective work function of the metal surface was not reflected as a shift in the energy levels of the organic semiconductor, as opposed to the results achieved with different substrate materials.;To investigate the chemical interactions at the metal/organic interface, we studied the metallization of poly(2-methoxy-5,2'-ethyl-hexyloxy-phenylene vinylene) (MEH-PPV), polystyrene (PS) and ozone treated polystyrene (PS-O3) surfaces by thermal deposition of aluminum. Photoelectron spectroscopy showed the degree of chemical interaction between Al and each polymer, for MEH-PPV, the chemical interactions were mainly through the C-O present in the side chain of the polymer structure. The chemical interaction of Al with polystyrene was less significant, but it showed a dramatic increase after ozone treatment of the polystyrene surface (due to the formation of exposed oxygen sites). Formation of metal oxide and metal-organic compound is detected during the Al metallization of MEH-PPV and ozone-treated PS surfaces. Our results showed that the condensation of Al on polymer surfaces is highly dependent on surface reactivity. Enormous differences were observed for the condensation coefficient of Al on PS and PS-O3 surfaces. For the inert PS surface, results showed that Al atoms poorly wet the polymer surface and form distributed clusters at the surface. Results on reactive polymer surfaces suggest morphology reminiscent of a Stranski-Krastanov-type growth and high contact area.;Many studies have shown that the insertion of a thin interlayer of the oxide or fluoride of alkali or alkaline metals between the low work function electrode and the organic semiconductor layers dramatically lowers the onset voltage and increases the efficiency compared to identical devices without the insulating layer. Various modes have been suggested for the mechanism of device performance enhancement. We have investigated the chemical and electrical interaction of (i) LiF with MEH-PPV, (ii) Al with MEH-PPV in the presence of a thin LiF layer at the interface, and finally (iii) the interaction of Al with LiF. AFM and XPS data showed that LiF forms island on the surface. Our data in agreement with various existing models suggested the (i) alteration in the electronic properties under applied bias, (ii) doping of the organic semiconductor, (iii) formation of metal alloy (Au-Li). In addition to the possible electrical modifications at the interface suggested previously, our data also suggest a change in the film growth on LiF modified surfaces.
机译:有机半导体器件的进步取决于对界面以及材料开发的更好理解。具有低电阻,低工作电压和长期稳定性以最小化器件退化的接口工程是关键要求之一。光电子能谱学是研究金属-半导体界面的强大技术,它可以:(i)阐明半导体和能确定肖特基势垒高度的触点的能级,(ii)检查电相互作用(例如电荷转移,偶极子)形成,感应密度的形成或极化子/双极化子状态的形成)影响能级对齐,(iii)界面化学的确定,以及(iv)界面形态的估计。在本文中,我们广泛地使用了光电子能谱对金属有机半导体界面进行了详细分析。在本研究中,我们展示了将光电子能谱用于能级图的构建,并显示了与工程材料化学剪裁有关的一些结果降低肖特基势垒的界面。在对各种衬底[Au,铟锡氧化物,Si(含天然氧化物)和Al(含天然氧化物)]上的聚对苯乙炔基有机半导体进行能级对准后,我们​​测试了控制能级的方法通过使用极性自组装分子(SAM)进行比对。光电子能谱表明,通过在金表面引入SAM,成功改变了金表面的有效功函数。我们发现在这种情况下,金属表面的有效功函数的变化没有反映为有机半导体能级的变化,这与使用不同衬底材料获得的结果相反。在金属/有机界面,我们研究了聚(2-甲氧基-5,2'-乙基-己氧基氧基亚苯基亚乙烯基)(MEH-PPV),聚苯乙烯(PS)和臭氧处理的聚苯乙烯(PS-O3)表面的金属化通过铝的热沉积。光电子能谱显示铝与每种聚合物之间的化学相互作用程度,对于MEH-PPV,化学相互作用主要是通过聚合物结构侧链中的C-O进行的。 Al与聚苯乙烯的化学相互作用不太明显,但是在臭氧处理聚苯乙烯表面后(由于形成了暴露的氧位),铝的化学相互作用显着增加。在MEH-PPV和臭氧处理的PS表面的Al金属化过程中,检测到金属氧化物和金属有机化合物的形成。我们的结果表明,Al在聚合物表面的缩合高度依赖于表面反应性。在PS和PS-O3表面观察到Al的缩合系数存在巨大差异。对于惰性PS表面,结果表明Al原子很难润湿聚合物表面,并在表面形成分布的簇。反应性聚合物表面的结果表明,其形态让人联想到Stranski-Krastanov型生长和高接触面积。;许多研究表明,在低功函数电极与电极之间插入了一层薄薄的碱金属或碱金属氧化物或氟化物中间层。与没有绝缘层的相同器件相比,有机半导体层显着降低了起始电压并提高了效率。对于设备性能增强的机制,已经提出了各种模式。我们已经研究了(i)LiF与MEH-PPV的化学和电学相互作用,(ii)在界面处存在薄LiF层的情况下Al与MEH-PPV的化学和电相互作用,最后研究了(iii)Al与LiF的相互作用。 AFM和XPS数据表明LiF在表面形成岛。我们的数据与各种现有模型一致,表明:(i)在施加偏压下电子性能发生了变化;(ii)有机半导体的掺杂;(iii)金属合金(Au-Li)的形成。除了先前建议的界面可能发生的电修饰之外,我们的数据还表明LiF修饰表面上的薄膜生长会发生变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号