首页> 外文学位 >Physically motivated internal state variable form of a higher order damage model for engineering materials with uncertainty.
【24h】

Physically motivated internal state variable form of a higher order damage model for engineering materials with uncertainty.

机译:具有不确定性的工程材料的高阶损伤模型的物理内部状态变量形式。

获取原文
获取原文并翻译 | 示例

摘要

Many experiments demonstrate that isotropic ductile materials used in engineering applications develop anisotropic damage and shows significant variation in elongation to failure. This anisotropic damage is manifest by material microstructural heterogeneities and morphological changes during deformation. The variation in elongation to the failure could be attributed to the uncertainties in the material microstructure and loading conditions. To study this deformation induced anisotropy arising from the initial material heterogeneities, we first performed uncertainty analysis using current form on an internal state variable plasticity and isotropic damage model (Bammann, 1984; Horstemeyer, 2001) to quantify the effect due to variations in material microstructure and loading conditions on elongation to failure. We extend the current isotropic damage form of theory into an anisotropic damage form for ductile material in which material heterogeneities are introduced based on damage distribution functions converted into a damage tensor of second rank. The outcome of this research is a physically motivated, uncertainty-based, anisotropic damage constitutive model that links microstructural features to mechanical properties. This was accomplished by pursuing three sub goals: (1) develop and quantify uncertainty related to material heterogeneities, (2) develop a methodology related to a higher order tensorial rank of damage for void nucleation and void growth, and (3) integrate thermodynamically constrained damage with a rate dependent plasticity constitutive material model. Later, we also proposed a new ISV theory that physically and strongly couples deformation due to damage-related internal defects to metal plasticity.
机译:许多实验表明,在工程应用中使用的各向同性延性材料会产生各向异性损伤,并显示出断裂伸长率的显着变化。这种各向异性的破坏表现为材料微观结构异质性和变形过程中的形态变化。断裂伸长率的变化可归因于材料微观结构和载荷条件的不确定性。为了研究由初始材料异质性引起的这种变形引起的各向异性,我们首先对内部状态变量可塑性和各向同性损伤模型(Bammann,1984; Horstemeyer,2001)使用电流形式进行不确定性分析,以量化由于材料微观结构变化而产生的影响。以及断裂伸长率的加载条件。我们将理论上的各向同性损伤形式扩展为可延展材料的各向异性损伤形式,其中基于损伤分布函数将材料异质性引入,该损伤分布函数转换为第二等级的损伤张量。这项研究的结果是将微观结构特征与机械性能联系起来的基于物理的,基于不确定性的各向异性损伤本构模型。这是通过追求三个子目标来实现的:(1)开发和量化与材料异质性有关的不确定性;(2)开发与高阶张量张量等级有关的空洞成核和空洞生长相关的方法;(3)整合热力学约束取决于速率的可塑性本构模型的损伤。后来,我们还提出了一种新的ISV理论,该理论将由于与损伤相关的内部缺陷而导致的形变与金属塑性物理地和牢固地耦合。

著录项

  • 作者

    Solanki, Kiran Nainmal.;

  • 作者单位

    Mississippi State University.;

  • 授予单位 Mississippi State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号