首页> 美国卫生研究院文献>Nature Communications >Physically informed artificial neural networks for atomistic modeling of materials
【2h】

Physically informed artificial neural networks for atomistic modeling of materials

机译:物理信息人工神经网络用于材料的原子建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Large-scale atomistic computer simulations of materials heavily rely on interatomic potentials predicting the energy and Newtonian forces on atoms. Traditional interatomic potentials are based on physical intuition but contain few adjustable parameters and are usually not accurate. The emerging machine-learning (ML) potentials achieve highly accurate interpolation within a large DFT database but, being purely mathematical constructions, suffer from poor transferability to unknown structures. We propose a new approach that can drastically improve the transferability of ML potentials by informing them of the physical nature of interatomic bonding. This is achieved by combining a rather general physics-based model (analytical bond-order potential) with a neural-network regression. This approach, called the physically informed neural network (PINN) potential, is demonstrated by developing a general-purpose PINN potential for Al. We suggest that the development of physics-based ML potentials is the most effective way forward in the field of atomistic simulations.
机译:材料的大规模原子计算机模拟严重依赖于原子间电势,该势能预测原子上的能量和牛顿力。传统的原子间电势基于物理直觉,但包含的可调参数很少,并且通常不准确。新兴的机器学习(ML)潜力可在大型DFT数据库中实现高度精确的插值,但由于纯粹是数学构造,因此难以移植到未知结构。我们提出了一种新方法,该方法可以通过将分子间键合的物理性质告知它们来极大地提高ML电位的可转移性。这是通过将相当普遍的基于物理的模型(分析键序势)与神经网络回归相结合来实现的。这种方法被称为物理信息神经网络(PINN)电位,通过为Al开发通用的PINN电位来证明。我们建议开发基于物理的ML势是原子模拟领域最有效的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号