首页> 外文学位 >Megahertz pulse-burst alexandrite laser diagnostic systems.
【24h】

Megahertz pulse-burst alexandrite laser diagnostic systems.

机译:兆赫脉冲猝发变石激光诊断系统。

获取原文
获取原文并翻译 | 示例

摘要

Megahertz pulse-burst laser systems coupled with megahertz-rate framing cameras have proven (over the last ten years) to be very robust in imaging of high-speed reacting and nonreacting supersonic flows. These Nd:YAG systems produce 20--30 pulses (at variable rates from 500 kHz to 1 MHz) with 50--100 mJ/pulse (lambda = 1064nm) and have been used with narrow, spectral-linewidth, iodine, atomic filters to image turbulence in supersonic boundary layers with great success (when operating at lambda = 532nm). To extend this pulse-burst capability at other wavelengths (wavelengths outside of the 5--30 GHz tuning range of Nd:YAG: lambda = 1064 nm fundamental, and lambda = 532 nm second harmonic), two unique, tunable, megahertz-rate alexandrite laser systems were designed and built. This dissertation documents these two systems and discusses the potential for tunable, megahertz, pulse-burst systems that have more tuning range than Nd:YAG. These tunable alexandrite systems substantially extend the wavelength range of pulse-burst laser technology, but, to date, have pulse-energy limitations. Tunable from 710 nm to 800 nm (in the fundamental), these lasers provide researchers one laser to reach multiple molecular or atomic resonances with variable pulse-burst pulse separations. The molecular and atomic species of interest in reacting and nonreacting flows are presented in Chapter 1, providing a road-map for the development of these tunable lasers.; This dissertation presents the design and development of these systems, including mode control, Herriott cell design for pulse separation, and the megahertz-tuning ringmaster-oscillator. Chapter 2 covers the physics of alexandrite as a solid-state, lamp-pumped, tunable medium and compares it to the tunability of Ti:sapphire. Chapter 3 and 4 present the pulse-burst alexandrite systems. The first system, built in Princeton's Applied Physics group (PAPG) (Chapter 3), produced 1-5 mJ total pulse-packet energy of 20--30 pulses, or approximately 100 muJ per pulse at lambda = 761 nm. The second system, built at Princeton Plasma Physics Labs (PPPL) (Chapter 4), produced pulse-bursts of 3--10 pulses with pulse power of 5--10 mJ/pulse at the fundamental wavelength of 758 nm. The spectral linewidths varied throughout the development of the two systems. Two different master-oscillator configurations were used, one linear, with a standing wave, and one ring, with a unidirectional wave. Using a linear, master-oscillator with double inter-cavity Fabry-Perot etalons, the PPPL pulse-burst system achieved 0.3A linewidth and limited tuning capability (limited by the tuning resolution of the inter-cavity, 9-plate, birefringent tuner). This made the system appropriate for laser induced fluorescence (LIF) studies of plasma turbulence, but, not sufficient for filtered Rayleigh scattering. The linear oscillator for the PAPG system achieved linewidths on the order of 1A (by way of a 4-plate, birefringent tuner). PAPG's system was designed with a Sacher diode-seeding system to decrease the linewidth to under 1 GHz (i.e., 0.002A) by way of cavity seeding, however, the linear oscillator did not reliably mode-lock.; To achieve mode-locked, mode-hop-free tuning on the order of 30 GHz with a 88 MHz linewidth pulse, the master oscillator was configured and built as a mode-locked, diode-injection-seeded, alexandrite ring-cavity with "rapid-ramp" cavity length stabilization (RCLS) technology. Chapter 5 and Chapter 6 present the design and performance of the unidirectional-wave, alexandrite ring laser. The mode-locked, alexandrite, ring laser's piezo modulation system and driver are presented in this thesis, along with experimental results which focus on spectral linewidth and spectral-purity characterization, using an atomic potassium filter at lambda = 766.701 nm and atomic rubidium filter at lambda = 780.2445 nm (vacuum wavelengths) for the alexandrite ring in single-pulse mode. These atomic, vapor-cell, experimental-scan res
机译:兆赫兹脉冲爆破激光系统与兆赫兹速率成帧相机相结合(在过去十年中)已被证明在高速反应和非反应超音速流成像中非常强大。这些Nd:YAG系统产生20--30脉冲(从500 kHz到1 MHz的可变速率),具有50--100 mJ /脉冲(λ= 1064nm),并已与窄的,光谱线宽,碘原子过滤器一起使用对超声速边界层中的湍流成像非常成功(在λ= 532nm下工作)。为了在其他波长(Nd:YAG的5--30 GHz调谐范围之外的波长:lambda = 1064 nm基波,lambda = 532 nm二次谐波)处扩展此脉冲猝发能力,两个独特的,可调的兆赫兹速率设计并建造了翠绿宝石激光系统。本文记录了这两个系统,并讨论了调谐范围比Nd:YAG大的可调兆赫兹脉冲猝发系统的潜力。这些可调谐翠绿宝石系统大大扩展了脉冲猝发激光技术的波长范围,但迄今为止,仍具有脉冲能量限制。这些激光器可调谐到710 nm至800 nm(基本),为研究人员提供了一种激光器,可通过可变的脉冲猝发脉冲间隔实现多种分子或原子共振。第1章介绍了反应流和非反应流中感兴趣的分子和原子种类,为开发这些可调谐激光器提供了路线图。本文介绍了这些系统的设计和开发,包括模式控制,用于脉冲分离的Herriott单元设计以及兆赫兹调谐环主振荡器。第2章介绍了变石作为固态,可泵浦的可调谐介质的物理原理,并将其与Ti:蓝宝石的可调谐性进行了比较。第3章和第4章介绍了脉冲猝发变石系统。第一个系统建立在普林斯顿大学应用物理小组(PAPG)(第3章)中,在λ= 761 nm时产生的1-5 mJ总脉冲包能量为20--30个脉冲,或每个脉冲约100μJ。第二个系统是由普林斯顿等离子体物理实验室(PPPL)建立的(第4章),在758 nm的基本波长下产生3--10个脉冲的脉冲群,脉冲功率为5--10 mJ /脉冲。光谱线宽在两个系统的整个开发过程中都在变化。使用了两种不同的主振荡器配置,一种是线性的,具有驻波,另一种是环形的,具有单向波。使用带有双腔法布里-珀罗标准具的线性主振荡器,PPPL脉冲猝发系统实现了0.3A的线宽和有限的调谐能力(受限于腔内9板双折射调谐器的调谐分辨率) 。这使该系统适合于等离子体湍流的激光诱导荧光(LIF)研究,但不足以过滤瑞利散射。 PAPG系统的线性振荡器的线宽约为1A(通过4板双折射调谐器)。 PAPG的系统设计有Sacher二极管注入系统,通过空腔注入将线宽减小到1 GHz以下(即0.002A),但是线性振荡器不能可靠地锁模。为了通过线宽为88 MHz的脉冲实现30 GHz左右的锁模,无模跳调谐,将主振荡器配置并构建为锁模的,注入了二极管的种子,翠绿的​​环形腔,其“快速斜坡”腔体长度稳定(RCLS)技术。第5章和第6章介绍了单向波亚历山大变环形激光器的设计和性能。本文介绍了锁模,翠绿宝石,环形激光器的压电调制系统和驱动器,并结合了实验结果,重点是使用λ= 766.701 nm的原子钾滤光片和λ= 766,701 nm原子atomic滤光片表征光谱线宽和光谱纯度。单脉冲模式下的亚历山大变石环的λ= 780.2445 nm(真空波长)。这些原子,蒸气电池,实验扫描分辨率

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号