首页> 外文学位 >Study of thermal fatigue of wafer level packages under temperature cycling.
【24h】

Study of thermal fatigue of wafer level packages under temperature cycling.

机译:温度循环下晶圆级封装的热疲劳研究。

获取原文
获取原文并翻译 | 示例

摘要

Solders are used extensively as electrical interconnects in microelectronics. Because of government regulations due to environmental concerns, lead based solders (SnPb) are being replaced by lead-free solder materials. One of the promising lead-free alloys is SnAgCu (SAC) (e.g. Sn96.5%Ag3.0%Cu0.5%). There are many challenges associated with reliability for lead free solders such as their melting temperature range, manufacturability, and mechanical performance under high temperature and high stress conditions. Therefore it becomes imperative to understand the fundamental behaviors of solder alloys. In this thesis, the Anand's model is used to describe the inelastic deformations of the solder alloys. The inelastic deformation includes both creep and rate-independent plastic deformations. Two typical Anand's models for SnPb and SAC have been introduced, respectively. Finite element analysis (FEA) is applied to a one-dimensional problem subjected to different temperatures and loads. Two solder alloys (SAC and SnPb) are analyzed simultaneously under different temperatures and tensile stresses. SnPb solder experiences less inelastic deformation than SAC at lower temperatures and stresses. But, SAC solder tends to creep less than SnPb at higher temperatures with a higher level of stresses.;Wafer Level Packaging (WLP) has the highest potential for future single chip packages because the WLP is intrinsically a chip size package. It is one of the fastest growing segments in semiconductor packaging industry due to the rapid advances in integrated circuit (IC) fabrication and the demands of growing market for faster, lighter, smaller, yet less expensive electronics products with high performance and low cost packaging. However, due to the mismatch of the coefficient of thermal expansion (CTE) between silicon and plastic PCB material, solder ball reliability subject to temperature cycling become the weakest point of the standard WLP technology. In order to improve the thermal cycling reliability, cu post WLP structure is developed. In this thesis the fundamental understanding of the cu post WLP reliability under thermal cycling is studied using 3-D finite element analysis. The finite element model considers all detailed structures of a cu post WLP, including redistribution layer (RDL), passivation, cu post, and epoxy. The energy dissipation per cycle at the critical locations is calculated based on the volume averaging over a thin layer of solder material along the solder ball and cu post interface. By assigning the material properties of cu post, passivation layer, and epoxy to the properties of the silicon, the cu post WLP becomes a traditional WLP without under bump metallurgy (UBM). Results showed that the energy dissipation per cycle for a cu post WLP is about 45% less than that of the modified cu post WLP. This implies that the introduction of cu post and epoxy as well as RDL acts as a stress buffer to reduce the stresses in solder joints, therefore the solder ball thermal cycling performance with cu post can be improved significantly. The finite element model of a standard WLP with UBM is also developed for the comparison. The energy dissipation for a standard WLP with UBM is almost twice the energy dissipation for a cu post WLP. This explains that during thermal cycling tests, the cu post WLP is superior in thermal cycling performance to the standard WLP with UBM structure.
机译:焊料被广泛用作微电子学中的电气互连。由于环境方面的考虑,由于政府法规的限制,无铅焊料材料取代了铅基焊料(SnPb)。一种有希望的无铅合金是SnAgCu(SAC)(例如Sn96.5%Ag3.0%Cu0.5%)。无铅焊料的可靠性存在许多挑战,例如其熔化温度范围,可制造性以及高温和高应力条件下的机械性能。因此,必须了解焊料合金的基本性能。本文采用Anand模型描述了焊料合金的非弹性变形。非弹性变形包括蠕变和速率无关的塑性变形。分别介绍了SnPb和SAC的两种典型的Anand模型。有限元分析(FEA)适用于经受不同温度和载荷的一维问题。两种焊料合金(SAC和SnPb)在不同的温度和拉伸应力下同时进行分析。与较低温度和应力下的SAC相比,SnPb焊料的弹性变形较小。但是,SAC焊料在较高温度和较高应力水平下往往比SnPb蠕变小。晶圆级封装(WLP)在未来的单芯片封装中具有最大的潜力,因为WLP本质上是芯片尺寸的封装。由于集成电路(IC)的飞速发展以及对具有高性能和低成本封装的更快,更轻,更小,更便宜的电子产品的不断增长的市场需求,它是半导体封装工业中增长最快的部分之一。但是,由于硅和塑料PCB材料之间的热膨胀系数(CTE)不匹配,受温度循环影响的焊球可靠性成为标准WLP技术的最薄弱点。为了提高热循环可靠性,​​开发了后置WLP结构。本文利用3-D有限元分析方法,研究了热循环下刀刃WLP的可靠性。有限元模型考虑了立柱WLP的所有详细结构,包括重新分布层(RDL),钝化层,立柱和环氧树脂。关键位置每个周期的能量消耗是根据沿焊球和接线柱界面的薄薄一层焊料材料的平均体积计算得出的。通过将立柱,钝化层和环氧树脂的材料属性分配给硅的属性,立柱WLP成为传统的WLP,而无需进行凸点下冶金(UBM)。结果表明,后置WLP的每个周期的能量消耗比改进后的后置WLP的大约低45%。这意味着引入铜柱和环氧树脂以及RDL可以作为应力缓冲,以减少焊点中的应力,因此可以显着改善铜柱的焊球热循环性能。为了进行比较,还开发了带有UBM的标准WLP的有限元模型。带有UBM的标准WLP的能耗几乎是立方米WLP的能耗的两倍。这说明在热循环测试过程中,cu WLP的热循环性能要优于具有UBM结构的标准WLP。

著录项

  • 作者

    Singh, Harmandeep.;

  • 作者单位

    Lamar University - Beaumont.;

  • 授予单位 Lamar University - Beaumont.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2008
  • 页码 70 p.
  • 总页数 70
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号