首页> 外文学位 >Terminal iterative learning for cycle-to-cycle control of industrial processes.
【24h】

Terminal iterative learning for cycle-to-cycle control of industrial processes.

机译:终端迭代学习,用于工业过程的逐周期控制。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this thesis is to study a cycle-to-cycle control approach called Terminal Iterative Learning Control (TILC) and apply it to the process of plastic sheet heating in a thermoforming oven. Until now, adjustments to the oven heater temperature setpoints have been made manually by a human operator following a trial and error approach. This approach causes financial losses, because plastic sheets are wasted during the period of time when the adjustments are made at the beginning of a production run. Worse, the heater setpoints are subject to modification because of variation in the ambient temperature, which has an important impact on the sheet reheat process.;The stability and rate of convergence of the TILC algorithm can be analyzed through the location of the closed-loop system poles in the cycle domain. This analysis is relatively easy for a first-order TILC but becomes more complex for a higher-order TILC algorithm. The singular value decomposition (SVD) is used to simplify the convergence analysis while decoupling the system in the cycle domain. The SVD technique can be used to facilitate the design of higher-order TILC algorithms.;Internal Model Control (IMC) is another approach that can make the ILC design easier, because there is only one parameter per filter to adjust. The IMC technique has an interesting feature. In the case where the system is nominal, the closed-loop transfer function of the system is the same as the IMC filter's transfer function. Therefore, the adjustment of the filter parameter allows the designer to select the desired system response.;For industrial processes such as thermoforming ovens, it is important that the systems controlled by TILC algorithms are stable and have good performance. For thermoforming ovens, the terminal sheet temperature response must not be too oscillatory from cycle to cycle, since this may lead to high heater temperature setpoints. In the most serious case, high heater temperatures can cause the sheet to melt and spill on the heating elements at the bottom of the oven.;The TILC approach is analyzed by studying the closed-loop system in the discrete cycle domain through the use of the z-transform. The system, which has dynamic behaviour in the time domain, becomes a static linear mapping in the cycle domain. One can then apply on this equivalent system a traditional control approach, while considering that the system output is sampled once at the end of the cycle. On the other hand, from the standpoint of the real system, this control approach can be viewed as cycle-to-cycle control.;The performance aspect must not be neglected, since it is important to minimize the number of wasted plastic sheets, particularly at process startup. To avoid such waste of time and material, it is necessary that the TILC algorithm converge as quickly as possible. However, the robustness and performance objectives are conflicting and an acceptable compromise must be achieved. The control engineer must define specifications to describe these two constraints. Tools such as the Hinfinity Mixed-Sensitivity Analysis and mu-Analysis can be used to check the compliance of a given TILC algorithm with the robustness and performance specifications defined before the analysis. One can therefore compare various TILC algorithms quantitatively, through a computed measure obtained with one of the two approaches. These same tools can be used for the design of TILC algorithms, using weighting functions representing the specifications.;Simulation and experimental results obtained on industrial thermoforming machines show the effectiveness of the various approaches in this thesis. Many examples are also presented throughout the chapters.
机译:本文的目的是研究一种称为终端迭代学习控制(TILC)的周期到周期控制方法,并将其应用于在热成型炉中加热塑料板的过程。到目前为止,人工操作人员按照反复试验的方法手动调整了烤箱加热器的温度设定点。这种方法会造成财务损失,因为在生产运行开始时进行调整时会浪费塑料板。更糟糕的是,由于环境温度的变化,加热器的设定值可能会发生变化,这对板材的再加热过程具有重要影响。; TILC算法的稳定性和收敛速度可以通过闭环的位置进行分析。循环域中的系统极点。对于一阶TILC,此分析相对容易,但对于高阶TILC算法,此分析将变得更加复杂。奇异值分解(SVD)用于简化收敛分析,同时在循环域中将系统解耦。 SVD技术可用于简化高阶TILC算法的设计。内部模型控制(IMC)是使ILC设计更容易的另一种方法,因为每个滤波器仅需调整一个参数。 IMC技术具有有趣的功能。在标称系统的情况下,系统的闭环传递函数与IMC滤波器的传递函数相同。因此,通过调整滤波器参数,设计人员可以选择所需的系统响应。对于诸如热成型烘箱的工业过程,由TILC算法控制的系统必须稳定且具有良好的性能,这一点很重要。对于热成型烤箱,接线板的温度响应在每个周期之间都不能太波动,因为这可能会导致加热器温度设定值过高。在最严重的情况下,较高的加热器温度可能导致板材熔化并溅到烤箱底部的加热元件上。TILC方法是通过使用以下方法研究离散循环域中的闭环系统来分析的: Z变换。该系统在时域中具有动态行为,在周期域中变为静态线性映射。然后,可以考虑在传统的控制方法上应用这种等效系统,同时考虑到系统输出在循环结束时进行一次采样。另一方面,从实际系统的角度来看,这种控制方法可以看作是逐周期控制。在性能方面不能忽略,因为将浪费的塑料板的数量减到最少是很重要的,特别是在流程启动时。为了避免浪费时间和材料,TILC算法必须尽快收敛。但是,健壮性和性能目标是矛盾的,必须实现可接受的折衷。控制工程师必须定义规范来描述这两个约束。可以使用诸如Hinfinity混合灵敏度分析和mu-Analysis之类的工具来检查给定TILC算法与分析之前定义的鲁棒性和性能指标之间的一致性。因此,可以通过使用两种方法之一获得的计算量来定量比较各种TILC算法。这些相同的工具可用于使用表示规格的加权函数来设计TILC算法。;在工业热成型机上获得的仿真结果和实验结果证明了本文各种方法的有效性。在整个章节中还提供了许多示例。

著录项

  • 作者

    Gauthier, Guy.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号