首页> 外文学位 >A (w/o) microemulsion approach for in-situ preparation of high concentrations of colloidal metal oxide nanoparticles.
【24h】

A (w/o) microemulsion approach for in-situ preparation of high concentrations of colloidal metal oxide nanoparticles.

机译:(w / o)微乳液方法用于原位制备高浓度的胶态金属氧化物纳米颗粒。

获取原文
获取原文并翻译 | 示例

摘要

Control over nanoparticle size is a key factor which labels a given nanoparticle preparation technique successful. When organic reactions are mediated by ultradispersed catalysts the concentration of the colloidal nanocatalysts and their stability become key factors as well. Ultradispersed metal oxide nanoparticles have applications as heterogeneous catalysts for organic reactions, and were recently demonstrated as effective H2S (g) absorbents. The catalytic activity and absorption effectiveness of metal oxide nanoparticles depend primarily on their surface area, which in turn, is dictated by their size, colloidal concentration and stability. This work presents a water-in-oil (w/o) microemulsion approach for in-situ preparation of ultradispersed metal oxide/hydroxide nanoparticles, namely: iron and copper and discusses the effect of different (w/o) microemulsion variables on their stability and highest possible time-invariant colloidal concentration (nanoparticle uptake). The concentration of the stabilized metal oxides corresponded to the nanoparticle uptake. In-situ preparation of colloidal catalysts and absorbents minimizes aggregation associated with storage and transportation. Much higher surface area per unit mass of nanoparticles and per unit volume of the colloidal suspension than reported in the literature was obtained. The following trends in the colloidal concentration were common for the (w/o) microemulsion system and the heavy oil matrix. An optimum water to surfactant mole ratio, R, was found for which a maximum nanopartic1e uptake was obtained. Nanopartic1e uptake increased linearly with the surfactant concentration and displayed a power function with the precursor salt concentration. A mathematical model based on correlations for water uptake by Winsor type II microemulsions accurately accounted for the effect of the aforementioned variables on the nanopartic1e uptake by the microemulsions. Furthermore, the in-situ microemulsion approach developed in the first part was applied for in-situ preparation of effective H2S(g) colloidal absorbents within heavy oil matrix. H2S(g) is a by-product of in-situ heavy oil upgrading with potential negative impact on underground water. In this work, preliminarily evaluations of the effectiveness of the in-situ prepared colloidal iron oxide/hydroxide in heavy oil matrix for the absorption of H2S(g) was conducted successfully.
机译:控制纳米颗粒尺寸是成功标记给定纳米颗粒制备技术的关键因素。当有机反应由超分散催化剂介导时,胶体纳米催化剂的浓度及其稳定性也成为关键因素。超分散的金属氧化物纳米颗粒可作为有机反应的非均相催化剂,最近被证明是有效的H2S(g)吸收剂。金属氧化物纳米颗粒的催化活性和吸收效率主要取决于其表面积,而表面积又取决于其尺寸,胶体浓度和稳定性。这项工作提出了原位制备超分散金属氧化物/氢氧化物纳米粒子(即铁和铜)的油包水(w / o)微乳液方法,并讨论了不同(w / o)微乳液变量对其稳定性的影响以及最高的时不变胶体浓度(纳米颗粒吸收)。稳定化的金属氧化物的浓度对应于纳米颗粒的吸收。胶体催化剂和吸收剂的原位制备可最大程度减少与储存和运输相关的聚集。与文献中报道的相比,获得了每单位质量的纳米粒子和每单位体积的胶体悬浮液更高的表面积。 (w / o)微乳液系统和重油基质的胶体浓度趋势如下。发现最佳的水与表面活性剂的摩尔比R,可获得最大的纳米颗粒吸收。纳米颗粒的吸收量随表面活性剂浓度线性增加,并随前体盐浓度显示幂函数。基于Winsor II型微乳的吸水率相关性的数学模型可准确说明上述变量对微乳对纳米颗粒吸收的影响。此外,在第一部分开发的原位微乳液方法被用于原位制备重油基质中有效的H2S(g)胶体吸收剂。 H2S(g)是原位重油提质的副产品,可能对地下水产生负面影响。在这项工作中,成功地进行了对原位制备的胶体氧化铁/氢氧化铁在重油基质中吸收H2S(g)的有效性的初步评估。

著录项

  • 作者

    Nassar, Nashaat.;

  • 作者单位

    University of Calgary (Canada).;

  • 授予单位 University of Calgary (Canada).;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号