首页> 外文学位 >Variability-aware low -power techniques for nanoscale mixed-signal circuits.
【24h】

Variability-aware low -power techniques for nanoscale mixed-signal circuits.

机译:用于纳米级混合信号电路的可变性感知低功耗技术。

获取原文
获取原文并翻译 | 示例

摘要

New circuit design techniques that accommodate lower supply voltages necessary for portable systems need to be integrated into the semiconductor intellectual property (IP) core. Systems that once worked at 3.3 V or 2.5 V now need to work at 1.8 V or lower, without causing any performance degradation. Also, the fluctuation of device characteristics caused by process variation in nanometer technologies is seen as design yield loss. The numerous parasitic effects induced by layouts, especially for high-performance and high-speed circuits, pose a problem for IC design. Lack of exact layout information during circuit sizing leads to long design iterations involving time-consuming runs of complex tools. There is a strong need for low-power, high-performance, parasitic-aware and process-variation-tolerant circuit design. This dissertation proposes methodologies and techniques to achieve variability, power, performance, and parasitic-aware circuit designs. Three approaches are proposed: the single iteration automatic approach, the hybrid Monte Carlo and design of experiments (DOE) approach, and the corner-based approach. Widely used mixed-signal circuits such as analog-to-digital converter (ADC), voltage controlled oscillator (VCO), voltage level converter and active pixel sensor (APS) have been designed at nanoscale complementary metal oxide semiconductor (CMOS) and subjected to the proposed methodologies. The effectiveness of the proposed methodologies has been demonstrated through exhaustive simulations. Apart from these methodologies, the application of dual-oxide and dual-threshold techniques at circuit level in order to minimize power and leakage is also explored.
机译:需要将适应便携式系统所需的较低电源电压的新电路设计技术集成到半导体知识产权(IP)内核中。曾经以3.3 V或2.5 V工作的系统现在需要以1.8 V或更低的电压工作,而不会导致任何性能下降。此外,纳米技术中工艺变化引起的器件特性波动也被视为设计良率损失。布局引起的大量寄生效应,特别是对于高性能和高速电路而言,为IC设计带来了问题。电路定型时缺乏精确的布局信息会导致设计迭代时间长,涉及复杂工具的耗时运行。迫切需要低功耗,高性能,寄生感知和耐工艺变化的电路设计。本文提出了实现可变性,功率,性能和寄生感知电路设计的方法和技术。提出了三种方法:单迭代自动方法,混合蒙特卡洛和实验设计(DOE)方法以及基于角点的方法。在纳米级互补金属氧化物半导体(CMOS)上设计了广泛使用的混合信号电路,例如模数转换器(ADC),压控振荡器(VCO),电压电平转换器和有源像素传感器(APS),建议的方法。通过详尽的仿真证明了所提出方法的有效性。除了这些方法之外,还探索了在电路级应用双氧化物和双阈值技术以最小化功率和泄漏的方法。

著录项

  • 作者

    Ghai, Dhruva V.;

  • 作者单位

    University of North Texas.;

  • 授予单位 University of North Texas.;
  • 学科 Computer Science.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号