首页> 外文学位 >Thermoelectric magnetohydrodynamic and thermocapillary driven flows of liquid conductors in magnetic fields.
【24h】

Thermoelectric magnetohydrodynamic and thermocapillary driven flows of liquid conductors in magnetic fields.

机译:磁场中液体导体的热电磁流体动力和热毛细管驱动流。

获取原文
获取原文并翻译 | 示例

摘要

The Solid/Liquid Lithium Divertor experiment (SLiDE) has been designed, constructed and operated in order to determine the behavior of these liquid conductors in a magnetic field with imposed thermal gradients. Liquid lithium is chosen for its applicability to fusion systems as well as recent demonstrations of its ability to passively redistribute incident heat fluxes on the order of 50[MW/m2]. The lithium is contained within a stainless steel tray that is actively cooled and contains a set of temperature diagnostics for analysis of the heat, flux coming from the tray. The system is magnetized by a set of external magnets and a linear electron beam is used to create heat fluxes similar to those found in fusion divertors. Surface velocity of the liquid lithium is measured with a digital camera.;A theory explaining the balance between thermoelectric magnetohydrodynamics and thero-capillary driven, free-surface flows in containers of arbitrary type in a magnetized environment has been developed. A new dimensionless group depending on the thermoelectric power of the liquid/container pair, the physical properties of the liquid and solid and the flow geometry has been found that determines which mechanism, TC or TEMHD, is the dominant effect in any given system.;Experiments show that TEMHD dominates the flow in SLiDE, consistent with the theory governing these flows. This is verified by series of qualitative experiments, as well as quantitative comparison with theoretical flow predictions. This constitutes the first direct observation of TEMHD driven flow yet reported in the literature. Application of the developed theory indicates liquid lithium fusion systems will operate in a TEMHD dominated regime. Technologies suggested by the exploitation of TEMHD pumping are also presented.
机译:设计,构建和运行了固态/液态锂分流器实验(SLiDE),以便确定这些液体导体在施加了热梯度的磁场中的行为。选择液态锂是因为其适用于聚变系统,并且最近证明了其能够被动重新分配入射热通量为50 [MW / m2]的能力。锂包含在主动冷却的不锈钢托盘中,并包含一组温度诊断程序,用于分析来自托盘的热量和磁通量。该系统由一组外部磁体磁化,并且使用线性电子束产生类似于聚变分流器中发现的热通量。用数码相机测量液态锂的表面速度。;已开发出一种理论,解释了热电磁流体动力学与磁化环境中任意类型容器中由热电偶驱动的自由表面流动之间的平衡。已经发现了一个新的无量纲基团,它取决于液体/容器对的热电势,液体和固体的物理性质以及流动的几何形状,它决定了哪种机制(TC或TEMHD)是任何给定系统中的主要作用。实验表明,TEMHD主导了SLiDE中的流,这与控制这些流的理论是一致的。通过一系列定性实验以及与理论流量预测的定量比较证明了这一点。这是TEMHD驱动流的第一个直接观察结果,目前尚无文献报道。发达理论的应用表明,液态锂聚变系统将以TEMHD为主。还介绍了利用TEMHD泵技术提出的技术。

著录项

  • 作者

    Jaworski, Michael Andrew.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Nuclear.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 286 p.
  • 总页数 286
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号