首页> 美国卫生研究院文献>Light Science Applications >Subnanometer imaging and controlled dynamical patterning of thermocapillary driven deformation of thin liquid films
【2h】

Subnanometer imaging and controlled dynamical patterning of thermocapillary driven deformation of thin liquid films

机译:热毛细管驱动薄膜变形的亚纳米成像和受控动力学图案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Exploring and controlling the physical factors that determine the topography of thin liquid dielectric films are of interest in manifold fields of research in physics, applied mathematics, and engineering and have been a key aspect of many technological advancements. Visualization of thin liquid dielectric film topography and local thickness measurements are essential tools for characterizing and interpreting the underlying processes. However, achieving high sensitivity with respect to subnanometric changes in thickness via standard optical methods is challenging. We propose a combined imaging and optical patterning projection platform that is capable of optically inducing dynamical flows in thin liquid dielectric films and plasmonically resolving the resulting changes in topography and thickness. In particular, we employ the thermocapillary effect in fluids as a novel heat-based method to tune plasmonic resonances and visualize dynamical processes in thin liquid dielectric films. The presented results indicate that light-induced thermocapillary flows can form and translate droplets and create indentation patterns on demand in thin liquid dielectric films of subwavelength thickness and that plasmonic microscopy can image these fluid dynamical processes with a subnanometer sensitivity along the vertical direction.
机译:在物理,应用数学和工程学的众多研究领域中,探索和控制确定薄液体介电膜的形貌的物理因素是人们感兴趣的,并且已成为许多技术进步的关键方面。薄液体介电膜形貌的可视化和局部厚度测量是表征和解释基本过程的基本工具。然而,通过标准的光学方法对于厚度的亚纳米变化实现高灵敏度是具有挑战性的。我们提出了一个组合的成像和光学图案投影平台,该平台能够在光学上感应液体薄介电薄膜中的动态流动,并以等离子体方式解决由此产生的形貌和厚度变化。特别是,我们将流体中的热毛细管效应作为一种新型的基于热的方法来调节等离子体共振并可视化液体薄电介质膜中的动力学过程。提出的结果表明,光诱导的热毛细流可以在亚波长厚度的薄液体电介质膜中按需形成和转移液滴,并形成压痕图案,并且等离子显微镜可以沿垂直方向以亚纳米灵敏度成像这些流体动力学过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号