首页> 外文学位 >Identifying feedback control strategies of running cockroaches and humans.
【24h】

Identifying feedback control strategies of running cockroaches and humans.

机译:确定正在发生的蟑螂和人类的反馈控制策略。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, we model biological sensorimotor behaviors of two species, a cockroach following a wall and a human running on a split-belt treadmill, to elucidate the neural processing that underlie locomotor control in biological systems: (1) We model the horizontal musculoskeletal dynamics of antenna-based wall following for the American cockroach, Periplaneta americana, as a dynamic planar unicycle with an idealized antenna. Performing nonlinear regression on the transient responses of blinded cockroaches running along various wall perturbations, we show that the stabilizing neural feedback requires not only the distance-to-wall information but also the rate of approach to the wall. We corroborate this result using a robotic platform equipped with an artificial antenna, a numerical simulation of antenna-based lateral leg spring (LLS) model, and a comparison with a neurophysiological experiment. (2) For human running, we model the sagittal-plane feedback control strategies during early and late adaptation phases of split-belt treadmill running. For the early adaptation phase, we assume spring-loaded inverted pendulum (SLIP) body mechanics with compositions of one-step deadbeat feedback controllers; we show that the compositions of slow-belt feedback controllers best represented the steady-state human running data. We compare the eigenvalues of the linearized stride-to-stride return map during late adaptation with those during baseline tied-belt running. Our result suggests larger eigenvalues (i.e. slower recovery rate) during late adaptation, suggesting that adapted split-belt is not simply the dynamic composition of a fast steps and slow steps.
机译:在本文中,我们对两个物种的生物学感觉运动行为进行了建模,这是蟑螂跟随墙壁和人在皮带式跑步机上奔跑,以阐明构成生物系统运动控制基础的神经处理:(1)对水平肌肉骨骼进行建模基于美国壁虎(Periplaneta americana)的壁基天线动力学,作为具有理想天线的动态平面独轮车。对沿着各种壁微扰动的盲蟑螂的瞬态响应进行非线性回归,我们表明稳定的神经反馈不仅需要距离壁的信息,而且还需要接近壁的速率。我们使用配备有人造天线的机器人平台,基于天线的侧腿弹簧(LLS)模型的数值模拟以及与神经生理实验的比较来证实这一结果。 (2)对于人类跑步,我们在分带式跑步机跑步的早期和晚期适应阶段对矢状面反馈控制策略进行建模。对于早期适应阶段,我们假设弹簧加载的倒立摆(SLIP)人体力学具有一步式无差拍反馈控制器的组成;我们显示慢带反馈控制器的组成最能代表稳态人类运行数据。我们将后期适应期间的线性步幅到步幅返回图的特征值与基线束带运动期间的特征值进行比较。我们的结果表明,后期适应过程中的特征值较大(即恢复速度较慢),这表明适应性分裂带不仅仅是快速步伐和缓慢步伐的动态组成。

著录项

  • 作者

    Lee, Jusuk.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Engineering Mechanical.;Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号