首页> 外文学位 >Characterization of energy dispersive semiconductor detectors for x-ray spectroscopy.
【24h】

Characterization of energy dispersive semiconductor detectors for x-ray spectroscopy.

机译:用于X射线光谱的能量色散半导体探测器的特性。

获取原文
获取原文并翻译 | 示例

摘要

Since the development of the electron microprobe in the 1950s by Castaing, characteristic x-ray emission lines have been used to determine chemical compositions of samples. Energy-dispersive detectors allow simultaneous multi-element analysis; continued improvements in detector technology have lowered limits of detection and allowed the effects of physical processes in the detector to become apparent. A well-characterized detector, in terms of its geometry and its response to x-rays, is essential for accurate and precise chemical analysis.;In this work, scans with a collimated 55Fe radionuclide source allowed the geometry of Si(Li) detectors to be determined. Across the surface of the detector the response function was uniform, indicating it is due primarily to detector physics and/or processing electronics. Monochromatized x-rays over an energy range of 1--10 keV were used to generate simple spectra in Si(Li) and silicon drift detectors with analog and digital pulse processing systems. Monte Carlo simulations of detector response allowed approximate contributions from physical processes to be seen individually.;Transport of energetic electrons, electron diffusion at metal-semiconductor junctions, and differences in detector structure together determine variation with energy of spectral features. The Si K photoelectron escape step at ∼1.8 keV, previously attributed to electron transport only, is found to be affected by diffusion. The diffusion tail to the low-energy side of the primary peak is found to have a component due to escape of Si L Auger electrons. Escape peak intensities in SDD and Si(Li) detectors agree only when contact photoelectron contributions are taken into account.
机译:自从Castaing在1950年代开发电子微探针以来,特征性的X射线发射线已用于确定样品的化学成分。能量分散检测器允许同时进行多元素分析;检测器技术的持续改进降低了检测极限,并使检测器中物理过程的影响变得显而易见。就其几何形状及其对X射线的响应而言,一个特性良好的检测器对于准确和精确的化学分析至关重要。在这项工作中,使用准直的55Fe放射性核素源进行扫描可以使Si(Li)检测器的几何形状达到被确定。在检测器的整个表面上,响应函数是均匀的,这表明它主要归因于检测器的物理和/或处理电子设备。使用1--10 keV能量范围的单色X射线在带有模拟和数字脉冲处理系统的Si(Li)和硅漂移检测器中生成简单光谱。探测器响应的蒙特卡洛模拟可以单独观察到物理过程的近似贡献。高能电子的传输,金属-半导体结处的电子扩散以及探测器结构的差异共同决定了光谱特征能量的变化。发现以前仅归因于电子传输的〜1.8 keV的Si K光电子逸出步骤受扩散影响。由于Si L Auger电子的逸出,发现到主峰低能侧的扩散尾具有分量。仅当考虑到接触光电子的贡献时,SDD和Si(Li)检测器中的逸出峰强度才会一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号