首页> 外文学位 >Nonlinear predictive control using particle swarm optimization: Applications to power systems.
【24h】

Nonlinear predictive control using particle swarm optimization: Applications to power systems.

机译:使用粒子群算法的非线性预测控制:在电力系统中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Although classical control is still the workhorse in the majority of control engineering applications, it is well recognized that this linear control method is not always the optimum way to deal with the typical highly nonlinear plants. This is especially true for multivariable systems with a variety of constraints. Due to recent and continual increment in the complexity of systems and tighter product specifications, the quality requirements from automatic control have increased greatly. At the same time, the available computing power has rose to fantastic levels. Consequently, computationally intensive control methods can be applied to complex systems comparatively easily. Model Predictive Control (MPC) techniques were developed to obtain tighter control and they were applied successfully to several industrial applications. MPC requires the solution of a constrained optimization problem at each sampling instant. This optimization is carried out by various techniques like linear programming (LP), quadratic programming (QP), dynamic programming (DP) and heuristics like Genetic Algorithms (GA).;In this thesis, a new implementation of MPC is proposed using Particle Swarm Optimization (PSO) algorithm. The proposed method formulates the MPC as an optimization problem and PSO is used to optimize it. This gives numerous advantages like adaptability, possibility of varying control objectives, and enhanced capability of handling constraints. The proposed method is applied to an area of engineering systems that has been relatively unexplored by MPC, i.e. power systems. Both SISO and MIMO nonlinear systems are considered. Three practical Power System problems are considered and the proposed technique is applied to them.;Keywords: MPC, Model Predictive Control, Nonlinear Control, Particle Swarm Optimization, Prediction Horizon, Control of Power Systems, Load Frequency Control, Synchronous Machine on Infinite Bus, Fossil Fuel Power Unit, Boiler-Turbine System, Predictive Control of Power Systems.
机译:尽管经典控制仍然是大多数控制工程应用中的主力军,但众所周知的是,这种线性控制方法并不总是处理典型的高度非线性设备的最佳方法。对于具有多种约束的多变量系统尤其如此。由于系统复杂性的不断提高和产品规格的严格化,对自动控制的质量要求已大大提高。同时,可用的计算能力已提高到惊人的水平。因此,可以将计算量大的控制方法比较容易地应用于复杂的系统。开发了模型预测控制(MPC)技术以获得更严格的控制,并将其成功应用于多种工业应用。 MPC在每个采样时刻都需要解决约束优化问题。通过线性规划(LP),二次规划(QP),动态规划(DP)和启发式算法(如遗传算法(GA))等多种技术来进行优化;本文提出了一种使用粒子群算法的MPC新实现。优化(PSO)算法。提出的方法将MPC公式化为优化问题,并使用PSO对其进行优化。这提供了许多优势,例如适应性,改变控制目标的可能性以及增强的处理约束能力。所提出的方法被应用于MPC尚未开发的工程系统领域,即电力系统。同时考虑了SISO和MIMO非线性系统。关键字:MPC,模型预测控制,非线性控制,粒子群优化,预测范围,电力系统控制,负载频率控制,无限总线上的同步机,MPC,模型预测控制,非线性控制化石燃料动力装置,锅炉涡轮系统,电力系统的预测控制。

著录项

  • 作者

    Yousuf, Muhammad Salman.;

  • 作者单位

    King Fahd University of Petroleum and Minerals (Saudi Arabia).;

  • 授予单位 King Fahd University of Petroleum and Minerals (Saudi Arabia).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2009
  • 页码 206 p.
  • 总页数 206
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号