首页> 外文学位 >Evolutionary genetics of flowering time regulation and variation in Helianthus.
【24h】

Evolutionary genetics of flowering time regulation and variation in Helianthus.

机译:向日葵开花时间调控和变异的进化遗传学。

获取原文
获取原文并翻译 | 示例

摘要

Plant development is highly plastic, as many traits change in response to environmental cues. But when plasticity evolves, what types of genes and mutations contribute? Does gene regulatory network architecture foster or constrain a gene's ability to respond appropriately to selection on plasticity and how often are parallel changes in genotype responsible for parallel changes in phenotypic plasticity?;I addressed these questions by studying the genetic basis of variation in the response of flowering time to photoperiod in the common sunflower, Helianthus annuus. Long-day, short-day, and aphotoperiodic flowering responses are found in both domesticated and wild H. annuus. Taking advantage of this remarkable diversity, I have examined the molecular basis of changes in flowering that occurred during two important evolutionary processes: (1) domestication; and (2) clinal adaptation in wild populations.;To identify domestication genes, genetic mapping, sequence and expression comparison, and molecular evolution studies were conducted on sunflower genes similar to genes that function as flowering regulators in other plants. This led to identification and functional characterization of a dominant-negative frameshift mutation in one of several recently duplicated FT/TFL1 gene family members. The mutation alters flowering behavior and experienced selection during early domestication. These findings suggest that this copy of FT is the first functionally identified sunflower "domestication gene." Notably, variants in other FT copies experienced selection during modern breeding.;Phenotypic analyses of North American wild populations found that flowering time decreases with latitude, and photoperiod response transitions occur along this cline. Northern populations are day-neutral; mid-latitude populations are short-day; and southern populations are long-day. Gene expression analyses demonstrated that genes at multiple hierarchical levels of multiple pathways factor into the overall cline. Paralog-specific changes in FT expression and tissue-specific changes in SOC1 expression contribute to transitions to day neutrality and long-day sensitivity respectively. Thus, functional redundancy and modular control of gene expression are sources of evolutionary lability often exploited by natural selection. Finally, gene expression comparisons between domesticated and wild H. annuus revealed that both parallel and convergent mechanisms have participated in repeated evolution of similar photoperiod responses in independent lineages.
机译:植物的生长具有高度的可塑性,因为许多特征会根据环境提示而变化。但是,当可塑性发展时,哪些类型的基因和突变起作用?基因调控网络体系结构是否会增强或限制基因对可塑性选择做出适当反应的能力,以及基因型平行变化多长时间导致表型可塑性平行变化?;我通过研究遗传变异的遗传基础解决了这些问题。常见向日葵向日葵的光周期开花时间。在驯化的和野生的H. annuus中都发现了长日,短日和非周期性的开花反应。利用这种显着的多样性,我研究了在两个重要的进化过程中发生的开花变化的分子基础:(1)驯化; (2)野生种群的适应性适应;为鉴定驯化基因,对向日葵基因进行了遗传图谱,序列和表达比较,以及分子进化研究,该向日葵基因类似于在其他植物中充当开花调节子的基因。这导致鉴定和功能表征的几个最近复制的FT / TFL1基因家族成员之一的显性负移码突变。该突变改变了开花行为并在早期驯化过程中经历了选择。这些发现表明,该FT拷贝是第一个在功能上得到鉴定的向日葵“驯化基因”。值得注意的是,其他FT副本中的变体在现代育种过程中经历了选择。;对北美野生种群的表型分析发现,开花时间随纬度的减少而减少,并且光周期反应的过渡沿该种系发生。北方人口是中性的。中纬度人群是短日活动;和南部人口是漫长的一天。基因表达分析表明,多种途径的多个层次上的基因会影响整个血统。 FT表达的同源物特异性变化和SOC1表达的组织特异性变化分别有助于转变为日中性和长日敏感性。因此,基因表达的功能冗余和模块化控制是经常被自然选择利用的进化不稳定性的来源。最后,驯化的和野生的H. annuus之间的基因表达比较表明,平行和会聚机制都参与了独立谱系中相似光周期反应的重复进化。

著录项

  • 作者

    Blackman, Benjamin K.;

  • 作者单位

    Indiana University.;

  • 授予单位 Indiana University.;
  • 学科 Biology Botany.;Biology Genetics.;Biology Evolution and Development.;Biology Plant Physiology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 314 p.
  • 总页数 314
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号