首页> 外文学位 >Sound attenuations of axial fan blade tones using flow-driven tunable resonator arrays.
【24h】

Sound attenuations of axial fan blade tones using flow-driven tunable resonator arrays.

机译:使用流量驱动的可调谐振器阵列来衰减轴流风扇叶片的声音。

获取原文
获取原文并翻译 | 示例

摘要

Flow-excited, tunable quarter-wavelength resonators can be integrated into the shrouds of ducted subsonic axial fans. This study explores their effectiveness in reducing propagations of tonal noise by means of acoustic wave cancellation. Resonators are a non-intrusive method of generating a secondary sound field near the plane of a rotor. As they can be strategically tuned to reduce radiated noise at the blade passage frequency (BPF) and its harmonics, resonators can be useful for a variety of applications to quiet existing and future turbomachinery.;Experiments have demonstrated that a single quarter wave resonator is effective in reducing unidirectional plane wave propagations for long wavelength ducted applications while an array is effective for shorter wavelength or un-ducted facilities where shrouded fans are used. Testing conducted at Center for Acoustics and Vibrations (CAV) at the Pennsylvania State University the Deutsches Zentrum fur Luft und Raumfahrt (DLR) in Berlin, Germany demonstrated that resonator arrays were effective in attenuating shorter wavelength plane-wave and higher order modal propagations of blade tone noise. A chiller fan enclosure, constructed in the CAV laboratory emulated an industrial chiller in its operation. Using this facility, resonators were observed to attenuate blade tone noise from a non-ideal ducted geometry.;The approaches used in this study evolved from Helmholtz resonators to conventional quarter wave tubes, to mouth tunable resonators, and finally to back-wall tunable resonators. These developments in tuning allowed for independent control of a resonator's magnitude and phase of the secondary sound field produced by the resonators. It was demonstrated that the use of two tunable resonator chambers oriented axially on either side of the blade region enables a dipole-like secondary sound field to be passively generated and bi-directional attenuations of plane wave noise to be achieved. Tonal attenuations of 28 dB were attained and BPF tones were reduced to less than 5 dB from the broadband noise floor for each case discussed above.;In parallel with experimental work, analytical models were developed to effectively model and predict optimal resonator configurations for a given fan in operation. Interactions between resonators and the driving pressure field from the rotor blades are modeled using transmission line (TL) theory. Blade tone acoustic pressure is obtained using a finite element method (FEM) propagation code. By combining of these two methods, a resonator configuration that achieves optimal attenuation can be numerically obtained.;The use of resonators has been shown to significantly attenuate fan noise in the conditions explored in the considered experiments. Numerical modeling has shown consistency in the response of flow driven resonators and their. These results indicate a strong potential for active control of fan noise using resonators and an approach to applying this control is presented.
机译:可以将流量激发的可调谐四分之一波长谐振器集成到管道式亚音速轴流风扇的罩中。这项研究探索了它们在通过声波消除来减少音调噪声传播方面的有效性。谐振器是一种在转子平面附近产生次级声场的非侵入式方法。由于可以对其进行策略性调整以减少叶片通过频率(BPF)及其谐波的辐射噪声,因此谐振器可用于各种应用,以使现有和未来的涡轮机械静音。实验表明,单四分之一波长谐振器是有效的在减少长波导管应用中的单向平面波传播的同时,阵列对于使用屏蔽风扇的较短波长或无导管设施有效。在宾夕法尼亚州宾夕法尼亚州立大学声学与振动中心(CAV)进行的测试表明,谐振器阵列可以有效衰减叶片的较短波长平面波和叶片的高阶模态传播,可以有效衰减叶片的模态传播。音调噪音。 CAV实验室中建造的冷风机外壳模拟了其运行中的工业冷风机。使用此工具,观察到了谐振器可以从非理想的管道几何结构中衰减叶片音调噪声。本研究中使用的方法从亥姆霍兹谐振器发展到传统的四分之一波长管,再到可口可调谐振器,最后发展到后壁可调谐振器。 。调谐的这些发展使得可以独立控制谐振器的大小和由谐振器产生的次级声场的相位。已经证明,使用轴向地在叶片区域的任一侧上定向的两个可调谐振器腔室,能够被动地产生偶极子状的次级声场,并且能够实现平面波噪声的双向衰减。在上述每种情况下,均实现了28 dB的音调衰减,并且BPF音调从宽带本底噪声降低到5 dB以下。与实验工作并行,开发了分析模型以有效地建模和预测给定给定的最佳谐振器配置风扇在运转。使用传输线(TL)理论对谐振器之间的相互作用以及来自转子叶片的驱动压力场进行建模。使用有限元方法(FEM)传播代码获得叶片音调声压。通过将这两种方法结合起来,就可以通过数值方式获得实现最佳衰减的谐振器配置。在研究中探索的条件下,使用谐振器可以显着衰减风扇噪声。数值模型已经显示出流动驱动谐振器及其响应的一致性。这些结果表明使用谐振器主动控制风扇噪声的潜力很大,并提出了一种应用该控制方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号