首页> 外文学位 >Thermoelectric properties of P-type nanostructured bismuth antimony tellurium alloyed materials.
【24h】

Thermoelectric properties of P-type nanostructured bismuth antimony tellurium alloyed materials.

机译:P型纳米结构铋锑碲合金材料的热电性能。

获取原文
获取原文并翻译 | 示例

摘要

Solid-state cooling and power generation based on thermoelectric effects are attractive for a wide range of applications in power generation, waste heat recovery, air-conditioning, and refrigeration. There have been persistent efforts on improving the figure of merit (ZT) since the 1950's; only incremental gains were achieved in increasing ZT, with the (Bi1-xSbx)2(Se1-yTey )3 alloy family remaining the best commercial material with ZT ∼ 1. To improve ZT to a higher value, we have been pursuing an approach based on random nanostructures and the idea that the thermal conductivity reduction that is responsible for ZT enhancement in superlattices structures can be realized in such nanostructures.;The synthesis and characterization of various nanopowders prepared by wet chemical as well as high energy ball milling methods will be discussed in this dissertation. The solid dense samples from nanopowders were prepared by direct current induced hot press (DC hot press) technique. The thermoelectric properties of the hot pressed samples have been studied in detail.;By ball milling ingots of bulk alloy crystals and hot pressing the nanopowders, we had demonstrated a high figure-of-merit in nanostructured bulk bismuth antimony telluride. In this dissertation, we use the same ball milling and hot press technique, but start with elemental chunks of bismuth, antimony, and tellurium to avoid the ingot formation step. We show that a peak ZT of about 1.3 can be achieved. Our material also exhibits a ZT of 0.7 at 250°C, close to the value reached when ingot was used. This process is more economical and environmentally friendly than starting from bulk alloy crystals. The ZT improvement is caused mostly by the low thermal conductivity, similar to the case using ingot. Transmission electron microscopy observations of the microstructures suggest that the lower thermal conductivity is mainly due to the increased phonon scattering from the high density grain boundaries and defects.;The performance of thermoelectric materials is determined by its dimensionless figure-of-merit (ZT) which needs to be optimized within a specific temperature range for a desired device performance. Hence, we show that by varying the Bi/Sb ratio, the peak ZT can be shifted to a higher or lower temperature for power generation applications or a cooling mode operation. A peak ZT of about 1.3 is achieved from a Bi0.4Sb1.6Te3 composition which is highest among the different compositions. These nanostructured bulk samples have a significantly low lattice thermal conductivity compared to the bulk samples due to the increased phonon scattering in the grain boundaries and defects. This study shows that Bi0.5Sb1.5Te3 may potentially perform better for cooling devices, while Bi0.3Sb1.7Te 3 should be able to show better power generation efficiency.;Several issues related to accurate measurement of thermoelectric properties were identified and many of them were solved during my studies and these are discussed in this thesis. With the data we obtained, it is clear that nanopowder-based thermoelectric materials hold significant promise. Therefore, a review of synthesis of nanostructured materials by solution-based methods, including a hydrothermal process for the Bi2Te3, Bi2Se 3, and Bi2Te2.25Se0.75 nanoparticles, a solvothermal route for Sb2Te3 nanostructures, and a polyol process for the preparation of Bi nanostructures is presented in this dissertation. These new nanostructures may find applications in enhancing the thermoelectric performance. Although small sized and well dispersed nanopowders of various thermoelectric materials could be prepared by a solution method in large scale, contamination and partial oxidation are always big challenges in a chemical approach. Hence, a high energy ball milling technique to prepare thermoelectric nanopowders in large scale and without major contamination is still found to be more efficient and preferred.
机译:基于热电效应的固态冷却和发电对发电,废热回收,空调和制冷等领域的广泛应用具有吸引力。自1950年代以来,一直在努力提高品质因数(ZT)。随着ZT的增加,仅获得了增量收益,而(Bi1-xSbx)2(Se1-yTey)3合金家族仍然是ZT≥1的最佳商业材料。为了将ZT提升到更高的价值,我们一直在寻求一种基于可以在这种纳米结构中实现导致超晶格结构中ZT增强的热导率降低的想法。讨论了通过湿化学法以及高能球磨法制备的各种纳米粉的合成和表征在这篇论文中。通过直流感应热压(DC热压)技术制备了纳米粉末的固体致密样品。对热压样品的热电性能进行了详细的研究。通过球磨大块合金晶体的锭和热压纳米粉末,我们已经证明了纳米结构的大体积碲化铋锑具有很高的品质因数。在本文中,我们使用相同的球磨和热压技术,但从铋,锑和碲的元素块开始,以避免铸锭形成步骤。我们显示可以实现约1.3的峰值ZT。我们的材料在250°C时的ZT值为0.7,接近使用铸锭时达到的值。与从块状合金晶体开始相比,此过程更经济,更环保。与使用铸锭的情况类似,ZT的改善主要是由低导热率引起的。透射电子显微镜观察到的微观结构表明,较低的热导率主要是由于高密度晶界和缺陷增加了声子散射。热电材料的性能取决于其无量纲的品质因数(ZT),需要在特定温度范围内优化以获得所需的器件性能。因此,我们显示出通过改变Bi / Sb比,峰值ZT可以移至更高或更低的温度,以用于发电应用或制冷模式操作。由Bi0.4Sb1.6Te3组成达到约1.3的峰值ZT,其在不同组成中最高。与散装样品相比,这些纳米结构的散装样品具有显着较低的晶格热导率,这是由于晶界和缺陷中声子的散射增加所致。这项研究表明,Bi0.5Sb1.5Te3可能对冷却设备具有更好的性能,而Bi0.3Sb1.7Te 3应该能够显示出更高的发电效率。;确定了与精确测量热电性能有关的几个问题,其中许多问题在我学习期间解决了这些问题,并在本文中进行了讨论。根据我们获得的数据,很明显纳米粉基热电材料具有巨大的前景。因此,对基于溶液的方法合成纳米结构材料的综述,包括用于Bi2Te3,Bi2Se 3和Bi2Te2.25Se0.75纳米颗粒的水热工艺,用于Sb2Te3纳米结构的溶剂热途径以及用于制备Bi的多元醇工艺本文介绍了纳米结构。这些新的纳米结构可用于增强热电性能。尽管可以通过溶液法大规模制备各种热电材料的小尺寸且分散良好的纳米粉,但是在化学方法中污染和部分氧化始终是巨大的挑战。因此,仍然发现高效率的球磨技术用于大规模制备热电纳米粉而没有严重污染,是更有效和优选的。

著录项

  • 作者

    Ma, Yi.;

  • 作者单位

    Boston College.;

  • 授予单位 Boston College.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号