首页> 外文学位 >Study of thermoelectric properties of nanostructured p-type Silicon-Germanium , Bismuth-Tellurium, Bismuth-Antimony, and halfheusler bulk materials.
【24h】

Study of thermoelectric properties of nanostructured p-type Silicon-Germanium , Bismuth-Tellurium, Bismuth-Antimony, and halfheusler bulk materials.

机译:纳米结构的p型硅锗,铋碲,铋锑和Halfheusler块状材料的热电性能研究。

获取原文
获取原文并翻译 | 示例

摘要

Silicon germanium alloys (SiGe) have long been used in thermoelectric modules for deep-space missions to convert radio-isotope heat into electricity. They also hold promise in terrestrial applications such as waste heat recovery. The performance of these materials depends on the dimensionless figure-of-merit ZT (= S2sigma T/kappa), where S is the Seebeck coefficient, sigma the electrical conductivity, kappa the thermal conductivity, and T is the absolute temperature. Since 1960 efforts have been made to improve the ZT of SiGe alloys, with the peak ZT of n-type SiGe reaching 1 at 900 - 950°C. However, the ZT of p-type SiGe has remained low. Current space-flights run on p-type materials with a peak ZT ~ 0.5 and the best reported p-type material has a peak ZT of about 0.65. In recent years, many studies have shown a significant enhancement of ZT in other material systems by utilizing a nanostructuring approach to reduce the thermal conductivity by scattering phonons more effectively than electrons. Here we show, using a low-cost and mass-production ball milling and direct-current induced hot press compaction nanocomposite process, that a 50% improvement in the peak ZT, from 0.65 to 0.95 at 800 - 900°C is achieved in p-type nanostructured SiGe bulk alloys. The ZT enhancement mainly comes from a large reduction in the thermal conductivity due to the increased phonon scattering at the grain boundaries and crystal defects formed by lattice distortion, with some contribution from the increased electron power factor at high temperatures.;Moreover, nanocomposite approaches have been used to study the thermoelectric properties of other material systems such as bismuth telluride (Bi-Te), bismuth antimony (Bi-Sb), and half-Heusler phases. We observed a significant improvement in peak ZT of nanostructured p- and n-type half-Heusler compounds from 0.5 to 0.8 and 0.8 to 1.0 respectively. The ZT improvement is mainly due to the reduction of thermal conductivity. This nanostructure approach is applicable to many other thermoelectric materials that are useful for automotive, industrial waste heat recovery, space power generation, or solar power conversion applications.
机译:硅锗合金(SiGe)长期以来一直用于热电模块中,用于执行深空任务,以将放射性同位素的热量转化为电能。它们在诸如废热回收等地面应用中也很有前途。这些材料的性能取决于无量纲的品质因数ZT(= S2sigma T / kappa),其中S是塞贝克系数,sigma是电导率,kappa是导热率,T是绝对温度。自1960年以来,人们一直在努力改善SiGe合金的ZT,n型SiGe的ZT峰值在900-950°C时达到1。但是,p型SiGe的ZT仍然很低。当前的太空飞行是在ZT约为0.5的p型材料上进行的,报道得最好的p型材料的ZT约为0.65。近年来,许多研究表明,通过利用纳米结构化方法通过比电子更有效地散射声子来降低热导率,在其他材料系统中ZT的显着提高。在这里,我们表明,使用低成本,批量生产的球磨和直流感应热压压实纳米复合工艺,在800-900°C下,ZT峰值可以从0.65提高到0.95,提高了50%。型纳米结构的SiGe块状合金。 ZT增强主要是由于晶界处声子散射的增加和晶格畸变形成的晶体缺陷导致的热导率的大幅降低,以及高温下电子功率因数增加的部分贡献。已被用于研究其他材料系统的热电性能,例如碲化铋(Bi-Te),铋锑(Bi-Sb)和半赫斯勒相。我们观察到纳米结构的p型和n型半霍斯勒化合物的ZT峰值分别从0.5到0.8和0.8到1.0有了显着提高。 ZT的改善主要是由于导热系数的降低。这种纳米结构方法适用于许多其他热电材料,这些材料可用于汽车,工业余热回收,空间发电或太阳能转换应用。

著录项

  • 作者

    Joshi, Giri.;

  • 作者单位

    Boston College.;

  • 授予单位 Boston College.;
  • 学科 Physics Condensed Matter.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:00

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号