首页> 外文学位 >Engineering monolithic nanoscopic tunnel junctions for molecular electronics using atomic layer deposition.
【24h】

Engineering monolithic nanoscopic tunnel junctions for molecular electronics using atomic layer deposition.

机译:使用原子层沉积技术为分子电子学设计单片纳米隧道结。

获取原文
获取原文并翻译 | 示例

摘要

In his classic talk "There's plenty of room at the bottom" in 1959, Richard Feynman proclaimed several visionary statements on working at the nanometer scale, which gave birth to the field of nanotechnology. He imagined devices that would involve manipulation of atoms and work on the principles of quantum mechanics. As a result, much interest has developed for the study of nanoparticles that possess unique physical properties that do not exist in bulk materials. They may provide unprecedented benefits in various fields such as electronics, medicine, and chemistry.;For electronics applications, nanoparticles provide several performance advantages over silicon microelectronics such as reduced size, higher sensitivity, and faster response time. Further, principles of selfassembly may provide economical solutions for designing future logic circuits. Most of the electronics research on nanoparticles has focused on materials such as quantum dots, carbon nanotubes, and fullerenes, for example, but less work has been conducted on molecule-based applications. The primary reason is the difficulty in making chemical contacts to single molecules or small molecular ensembles, which are only a few nanometers in size. However, single molecule electronic applications provide greater possibilities of control by tailoring the functionality of chemical groups. Most moleculeelectronic based investigations have used scanning tunneling microscopy to probe single molecule electrical transport properties. STM studies of molecules have revealed many interesting and potentially useful phenomena, but the slow speed and economics of the STM based measurements are not scalable for engineering practical molecular devices.;In this thesis, a novel design is presented wherein nanoscopic tunnel junctions are embedded as monolithic structures in a silicon wafer and used for investigating the electronic properties of small ensembles down to single molecules. Molecules are adsorbed (i.e. trapped) under high electric fields at room temperature and detected using inelastic electron tunneling spectroscopy (IETS) at cryogenic temperatures. The peaks in IETS spectra provide critical information for the engineering of electrode-molecule interfaces and the study of vibrational features of molecules present in tunnel junctions. The design uses advanced reaction engineering principles including atomic layer deposition (ALD) and selective area growth to fabricate molecule-size electrodes with the required 1-2 nm spacing. ALD has been selected because of its excellent control over the growth rate (typically ≤0.1 nm/cycle), and the electrode microstructure.;Successful nanofabrication of monolithic metal-vacuum-metal tunnel junctions has been achieved with demonstrated critical feature sizes of 1-2 nm. In-situ field emission and electron tunneling measurements are used to characterize the electrode properties and electrode spacing during the ALD processing. We demonstrate that molecular adsorption into tunnel junctions can be precisely controlled using electric fields for adsorption, and detection via IETS spectra. The IETS features are shown to distinguish between physisorbed and chemisorbed states of the adsorbed molecules. Moreover, we demonstrate that the molecules can be desorbed and re-adsorbed reversibly without affecting the electrode properties, thereby demonstrating the reusability of these tunnel junctions for sensor applications.;This work is a significant advance over previous nanofabrication designs that lacked sub-nanometer feature size control or control of the electrode structure, and were unable to engineer nanoscopic tunnel junctions. In addition, we demonstrate the nanofabrication of multiple pairs of tunnel junctions operating in parallel for the first time. These nanostructures are promising for the scaling of molecule-based devices for developing future applications such as logic circuits, memory elements, and sensors.
机译:理查德·费曼(Richard Feynman)在1959年的经典演讲“底部有足够的空间”中,宣布了几项关于纳米尺度工作的富有远见的陈述,从而催生了纳米技术领域。他设想了将涉及原子操纵并致力于量子力学原理的设备。结果,对于具有独特的物理性质的纳米颗粒的研究已经引起了很多兴趣,而纳米颗粒具有散装材料中不存在的独特物理性质。它们可能在电子,医学和化学等各个领域提供空前的好处。对于电子应用,纳米粒子相对于硅微电子具有许多性能优势,例如尺寸减小,灵敏度更高和响应时间更快。此外,自组装的原理可以为设计未来的逻辑电路提供经济的解决方案。例如,大多数有关纳米粒子的电子学研究都集中在诸如量子点,碳纳米管和富勒烯等材料上,但是在基于分子的应用上所做的工作却很少。主要原因是难以与只有几纳米大小的单分子或小分子集合发生化学接触。但是,单分子电子应用通过调整化学基团的功能性提供了更大的控制可能性。大多数基于分子电子学的研究都使用扫描隧道显微镜来探测单分子电传输性质。 STM对分子的研究揭示了许多有趣且可能有用的现象,但是基于STM的测量的缓慢速度和经济性无法扩展到工程实际的分子装置中。本文提出了一种新颖的设计,其中纳米隧道结被嵌入硅晶片中的单片结构,用于研究小分子直至单个分子的电子性质。在室温下,分子在高电场下被吸附(即被捕获),并在低温下使用非弹性电子隧穿光谱法(IETS)进行检测。 IETS光谱中的峰为电极-分子界面的工程设计以及隧道结中存在的分子的振动特征研究提供了关键信息。该设计使用先进的反应工程原理,包括原子层沉积(ALD)和选择性区域生长,以制造所需的1-2 nm间距的分子大小的电极。选择ALD是因为其对生长速率(通常≤0.1nm /周期)的出色控制,以及电极的微观结构。;已成功完成了纳米单片金属-真空-金属隧道结的纳米加工,其关键特征尺寸为1- 2纳米原位场发射和电子隧穿测量用于表征ALD处理期间的电极特性和电极间距。我们证明分子吸附到隧道结可以使用电场进行吸附,并通过IETS光谱检测精确控制。示出了IETS特征以区分被吸附分子的物理吸附状态和化学吸附状态。此外,我们证明了分子可以在不影响电极性能的情况下可逆地解吸和再吸附,从而证明了这些隧道结在传感器应用中的可重复使用性。尺寸控制或电极结构的控制,并且无法设计纳米级隧道结。另外,我们首次展示了多对并行运行的隧道结的纳米制造。这些纳米结构有望扩大基于分子的器件的规模,以开发诸如逻辑电路,存储元件和传感器之类的未来应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号