首页> 外文学位 >In-plane all-photonic transduction method for silicon photonic microcantilever array sensors.
【24h】

In-plane all-photonic transduction method for silicon photonic microcantilever array sensors.

机译:硅光子微悬臂阵列传感器的面内全光子转换方法。

获取原文
获取原文并翻译 | 示例

摘要

We have invented an in-plane all-photonic transduction method for photonic microcantilever arrays that is scalable to large arrays for sensing applications in both bio- and nanotechnology. Our photonic transduction method utilizes a microcantilever forming a single mode rib waveguide and a differential splitter consisting of an asymmetric multimode waveguide and a Y-branch waveguide splitter. The differential splitter's outputs are used to form a differential signal that has a monotonic response to microcantilever deflection. A differential splitter using an amorphous silicon strip-loaded multimode rib waveguide is designed and fabricated to demonstrate the feasibility of the in-plane photonic transduction method. Our initial implementation shows that the sensitivity of the device is 0.135x10-3 nm-1 which is comparable to that of other readout methods currently employed for static-deflection based sensors.;Through further analysis of the optical characteristics of the differential splitter, a new asymmetric double-step multimode rib waveguide has been devised for the differential splitter. The new differential splitter not only improves sensitivity and reduces size, but also eliminates several fabrication issues. Furthermore, photonic microcantilever arrays are integrated with the differential splitters and a waveguide splitter network in order to demonstrate scalability. We have achieved a measured sensitivity of 0.32x10-3 nm-1, which is 2.4 times greater than our initial result while the waveguide length is 6 times shorter.;Analytical examination of the relationship between sensitivity and structure of the asymmetric double-step rib waveguide shows a way to further improve performance of the photonic microcantilever sensor. We have demonstrated experimentally that greater sensitivity is achieved when increasing the step height of the double-step rib waveguide. Moreover, the improved sensitivity of the photonic microcantilever system, 0.77x10-3 nm-1, is close to the best reported sensitivities of other transduction methods (∼10-3 nm-1 ).;Keywords: Jong Wook Noh, microcantilever, in-plane photonic transduction, photonic microcantilever array sensor
机译:我们已经发明了一种用于光子微悬臂阵列的面内全光子转导方法,该方法可扩展到大型阵列,以用于生物技术和纳米技术中的传感应用。我们的光子转导方法利用形成单模肋状波导的微悬臂梁和由不对称多模波导和Y分支波导分束器组成的差分分束器。差分分配器的输出用于形成对微悬臂梁偏转具有单调响应的差分信号。设计和制造了使用非晶硅带状负载多模肋波导的差分分路器,以证明平面内光子转导方法的可行性。我们的初步实现显示该设备的灵敏度为0.135x10-3 nm-1,与当前基于静态偏转的传感器采用的其他读出方法相当。通过进一步分析差分分束器的光学特性,已经为差动分离器设计了一种新的不对称双步多模肋状波导。新的差分分配器不仅提高了灵敏度并减小了尺寸,而且消除了一些制造问题。此外,光子微悬臂阵列与差分分离器和波导分离器网络集成在一起,以展示可扩展性。我们已经实现了0.32x10-3 nm-1的测量灵敏度,这比我们的初始结果高2.4倍,而波导长度却短了6倍。;分析检查不对称双阶梯肋的灵敏度与结构之间的关系波导显示了一种进一步改善光子微悬臂梁传感器性能的方法。我们已经通过实验证明,当增加双阶梯肋形波导的阶梯高度时,可以获得更高的灵敏度。此外,光子微悬臂梁系统的灵敏度提高了0.77x10-3 nm-1,接近其他转导方法的最佳灵敏度报告(〜10-3 nm-1)。平面光子转导,光子微悬臂阵列传感器

著录项

  • 作者

    Noh, Jong Wook.;

  • 作者单位

    Brigham Young University.;

  • 授予单位 Brigham Young University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Mechanical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号