首页> 外文学位 >High throughput study of fuel cell proton exchange membranes: Poly(vinylidene fluoride)/acrylic polyelectrolyte blends and nanocomposites with zirconium.
【24h】

High throughput study of fuel cell proton exchange membranes: Poly(vinylidene fluoride)/acrylic polyelectrolyte blends and nanocomposites with zirconium.

机译:燃料电池质子交换膜的高通量研究:聚偏二氟乙烯/丙烯酸聚电解质混合物以及与锆的纳米复合材料。

获取原文
获取原文并翻译 | 示例

摘要

Sustainability is perhaps one of the most heard buzzwords in the post-20 th century society; nevertheless, it is not without a reason. Our present practices for energy supply are largely unsustainable if we consider their environmental and social impact. In view of this unfavorable panorama, alternative sustainable energy sources and conversion approaches have acquired noteworthy significance in recent years. Among these, proton exchange membrane fuel cells (PEMFCs) are being considered as a pivotal building block in the transition towards a sustainable energy economy in the 21st century. The polyelectrolyte membrane or proton exchange membrane (PEM) is a vital component, as well as a performance-limiting factor, of the PEMFC. Consequently, the development of high-performance PEM materials is of utmost importance for the advance of the PEMFC field. In this work, alternative PEM materials based on semi-interpenetrated networks from blends of poly(vinyledene fluoride) (PVDF) (inert phase) and sulfonated crosslinked acrylic polyelectrolytes (PE) (proton-conducting phase), as well as tri-phase PVDF/PE/zirconium-based composites, are studied. To alleviate the burden resulting from the vast number of possible combinations of the different precursors utilized in the preparation of the membranes (PVDF: 5x, PE: 2x, Nanoparticle: 3x), custom high-throughput (HT) screening systems have been developed for their characterization. By coupling the data spaces obtained via these systems with the appropriate statistical and data analysis tools it was found that, despite not being directly involved in the proton transport process, the inert PVDF phase plays a major role on proton conductivity. Particularly, a univocal inverse correlation between the PVDF crystalline characteristics (i.e., crystallinity and crystallite size) and melt viscosity, and membrane proton conductivity was discovered. Membranes based on highly crystalline and viscous PVDF homopolymers exhibited reduced proton conductivity due to precluded segmental motion and physical blockage of the PE chains during crosslinking. In addition, a maximum effective amount of PE (55-60wt%, neutralized form) beneficial for proton conductivity was revealed. Some of the aforementioned effects may possibly have been overlooked if a high-throughput study including plentiful combinations of multiple precursors hadn't been performed. In the case of composite membranes, despite the fact that nanoparticle dispersion was thermodynamically limited, a general improvement in proton conductivity was evidenced at low to medium nanoparticle loadings (0.5 to 1wt%) in comparison to non-hybrid PVDF/PE references. This beneficial effect was particularly noticeable in membranes based on PVDF homopolymers (7% to 14.3% increment), where the nanoparticles induced a "healing" effect by providing proton-conducting paths between non-crosslinked PE channels separated by dense PVDF areas resulting from large PVDF crystallites. In general, the results presented herein are promising for the development of new cost-effective alternative PEMs.
机译:可持续性也许是20世纪后社会最常听到的流行语之一。然而,并非没有原因。如果考虑到能源和环境对社会的影响,我们目前的能源供应做法在很大程度上是不可持续的。鉴于这种不利的局面,近年来,替代性可持续能源和转换方法已具有重要意义。其中,质子交换膜燃料电池(PEMFC)被认为是21世纪向可持续能源经济过渡的关键组成部分。聚电解质膜或质子交换膜(PEM)是PEMFC的重要组成部分,也是性能限制因素。因此,高性能PEM材料的开发对于PEMFC领域的发展至关重要。在这项工作中,基于半互穿网络的替代PEM材料由聚偏二氟乙烯(PVDF)(惰性相)和磺化交联丙烯酸聚电解质(PE)(质子传导相)以及三相PVDF的混合物构成研究了/ PE /锆基复合材料。为了减轻因膜制备中使用的不同前体的大量可能组合(PVDF:5x,PE:2x,纳米颗粒:3x)而造成的负担,已开发了定制的高通量(HT)筛查系统用于他们的表征。通过将通过这些系统获得的数据空间与适当的统计和数据分析工具进行耦合,发现尽管不直接参与质子传输过程,但惰性PVDF相在质子传导性方面起着重要作用。特别是,发现了PVDF晶体特性(即结晶度和微晶尺寸)与熔体粘度和膜质子电导率之间明确的反相关。基于高结晶度和粘性PVDF均聚物的膜表现出降低的质子传导性,这是由于交联过程中PE链没有节段的运动和物理阻塞。另外,揭示了对质子传导性有益的最大有效量的PE(55-60wt%,中和形式)。如果未进行包括多种前体的大量组合在内的高通量研究,则上述某些影响可能已被忽略。在复合膜的情况下,尽管事实上纳米粒子的分散受到热力学限制,但与非混合PVDF / PE参比相比,在低至中等的纳米粒子负载量(0.5至1wt%)下,质子传导性得到了普遍改善。这种有益效果在基于PVDF均聚物的膜(增量为7%至14.3%)中尤为明显,其中纳米颗粒通过在非交联PE通道之间提供质子传导路径,从而导致了“愈合”效果,PE通道被较大的PVDF致密区域隔开PVDF晶体。一般而言,本文提出的结果对于开发新的具有成本效益的替代PEM很有希望。

著录项

  • 作者

    Zapata B., Pedro Jose.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Chemical.;Energy.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 269 p.
  • 总页数 269
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号