首页> 外文学位 >Interactions between macroalgae and the sediment microbial community: Nutrient cycling within shallow coastal bays.
【24h】

Interactions between macroalgae and the sediment microbial community: Nutrient cycling within shallow coastal bays.

机译:大型藻类与沉积物微生物群落之间的相互作用:浅海沿海海湾中的养分循环。

获取原文
获取原文并翻译 | 示例

摘要

Ephemeral macroalgal blooms are considered a symptom of eutrophication in shallow coastal lagoons, but their influence on nutrient cycling dynamics in these systems is not fully understood. From 2006-2008, I conducted a series of experiments to determine the influence of living and senescent macroalgae on sediment carbon (C) and nitrogen (N) cycling in coastal lagoons along the Delmarva Peninsula, USA. In particular, I focused on how macroalgae affect the microbial community at the sediment-water interface of shallow subtidal sediments because this complex consortium of autotrophic (e.g. benthic microalgae, BMA) and heterotrophic (e.g. bacteria) organisms plays a critical role in nutrient cycling within these systems. To more accurately address microbial uptake of nutrients and organic matter from porewater and surface water sources, I designed and tested the "perfusionator," an experimental apparatus which allowed for continuous and homogenous perfusion of sediment porewater with dissolved tracers. I used the perfusionator in an outdoor mesocosm study to investigate the influence of benthic micro- and macroalgae on sediment organic matter quantity and quality using bulk and molecular level (total hydrolyzable amino acids, THAA; phospholipid linked fatty acids, PLFA) analyses. In a companion study. I further quantified C and N cycling by explicitly tracking C and N uptake into the sediments in the presence and absence of macroalgae using a dual stable isotope (H13CO3-, 15NH4+) tracer approach in combination with isotope analyses of THAA and PLFA. Together, the studies demonstrated that BMA activity, which was dominated by diatoms according to PLFA biomarkers, increased storage of C and N in surface sediments, relative to dark treatments without BMA. BMA also increased the lability of sediment organic matter, which in turn resulted in observed increases in bacterial PLFA concentrations and isotopic incorporation. Efficient shuttling of C and N between BMA and bacteria in this system served as a mechanism for retention of C and N within the sediments. Macroalgae fundamentally altered sediment C and N cycling by decreasing sediment organic matter buildup. Macroalgae also sequestered C and N, but sediment C and N uptake decreased by ∼40% when macroalgae were present. This was likely due to shading of the sediment surface by macroalgae, which decreased BMA production, which in turn decreased bacterial production. Although macroalgae are capable of sequestering significant amounts of nutrients, storage of C and N as macroalgal biomass is only temporary, as these blooms often exhibit a bloom and die-off cycle. In the final portion of this project, I traced C and N from senescing macroalgae into relevant sediment pools. A macroalgal die-off was simulated by the addition of freeze-dried macroalgae, pre-labeled with 13C and 15N, to sediment mesocosms. Bulk sediments took up label immediately following the die-off, and macroalgal C and N were retained in the sediments for >2 weeks. Approximately 6 to 50% and 2 to 9% of macroalgal N and C, respectively, were incorporated into the sediments. Label from the macroalgae appeared first in bacterial and then BMA biomarkers, suggesting that shuttling of macroalgal C and N between these communities may serve as a mechanism for retention of some macroalgal nutrients within the sediments. Together, these experiments suggest that ephemeral macroalgae diminish C and N uptake by the sediment microbial community, which may substantially impact the response of coastal bays to increased nutrient loading.
机译:短暂的藻类大量开花被认为是沿海浅水泻湖富营养化的症状,但是它们对这些系统中养分循环动力学的影响尚不完全清楚。从2006年至2008年,我进行了一系列实验,以确定生活和衰老的大型藻类对美国德尔马瓦半岛沿岸泻湖中沉积物碳(C)和氮(N)循环的影响。特别是,我专注于大型藻类如何影响浅潮下沉积物的沉积物-水界面处的微生物群落,因为这种自养生物(例如底栖微藻,BMA)和异养生物(例如细菌)的复杂联合在养分循环中起着至关重要的作用。这些系统。为了更准确地解决微生物从孔隙水和地表水源中吸收养分和有机质的问题,我设计并测试了“灌注器”,这是一种实验设备,可以用溶解的示踪剂连续均匀地灌注沉积物孔隙水。我在室外中观研究中使用了灌注器,通过体积和分子水平(总可水解氨基酸,THAA;磷脂连接的脂肪酸,PLFA)分析来研究底栖微藻和大型藻类对沉积物有机物数量和质量的影响。在同伴学习中。我通过使用双重稳定同位素(H13CO3-,15NH4 +)示踪方法结合THAA和PLFA的同位素分析来明确跟踪存在和不存在巨藻的情况下对沉积物中C和N的吸收,从而进一步量化了C和N的循环。总之,研究表明,相对于没有BMA的黑暗处理方法,根据PLFA生物标志物,BMA活性主要由硅藻控制,可以增加表面沉积物中C和N的存储量。 BMA还增加了沉积物有机物的不稳定性,继而导致观察到细菌PLFA浓度和同位素掺入的增加。在该系统中,BMA和细菌之间的C和N有效穿梭是将C和N保留在沉积物中的一种机制。大型藻类通过减少沉积物有机质的积累从根本上改变了沉积物的碳和氮循环。大型藻类也隔离了碳和氮,但是当存在大型藻类时,沉积物对碳和氮的吸收减少了约40%。这可能是由于大型藻类对沉积物表面形成了阴影,从而降低了BMA的产生,进而降低了细菌的产生。尽管大型藻类能够隔离大量养分,但由于大型藻类生物量通常表现出开花和枯死周期,因此作为大型藻类生物质的碳和氮的存储只是暂时的。在该项目的最后部分中,我从感知大型藻类到相关沉积池中追踪了C和N。通过将预先用13 C和15 N标记的冻干大型藻类添加到沉积介体中来模拟大型藻类的灭绝。大量的沉积物在死亡后立即被标记,并且大型藻类中的C和N被保留在沉积物中> 2周。分别将大约6%至50%和2%至9%的大型藻类N和C掺入了沉积物中。来自大型藻类的标记首先出现在细菌中,然后出现在BMA生物标记中,表明这些群落之间大型藻类C和N的穿梭可能是将某些大型藻类营养物保留在沉积物中的一种机制。总之,这些实验表明,短暂的大型藻类减少了沉积物微生物群落对C和N的吸收,这可能会大大影响沿海海湾对增加养分负荷的反应。

著录项

  • 作者

    Hardison, Amber Kay.;

  • 作者单位

    The College of William and Mary.;

  • 授予单位 The College of William and Mary.;
  • 学科 Biogeochemistry.;Environmental Sciences.;Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 285 p.
  • 总页数 285
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号