首页> 外文学位 >Genome-wide analysis of yeast meiotic recombination landscape.
【24h】

Genome-wide analysis of yeast meiotic recombination landscape.

机译:全基因组分析酵母减数分裂重组格局。

获取原文
获取原文并翻译 | 示例

摘要

At the heart of meiosis is meiotic recombination where programmed double-strand breaks are repaired into either crossovers (COs) or noncrossovers (NCOs). COs promote successful chromosome segregation during the first meiotic division by establishing chiasmata, which are physical connections between homologous chromosomes that provide the tension to properly align chromosomes on the meiosis I spindle. Homologs lacking COs may result in nondisjunction, leading to aneuploid gametes. The number and distribution of COs are tightly regulated to ensure a successful meiotic division. Despite the importance of COs, the mechanisms underlying CO control remain elusive, largely due to the difficulty in determining CO distribution on a genome-wide level.;In this thesis, we describe two methods for mapping the distribution of COs and NCOs genome-wide using two polymorphic Saccharomyces cerevisiae strains, S96 and YJM798. First, we used DNA microarrays to identify ∼8000 polymorphic markers in the progeny of S96 and YJM789. Eight meiotic mutants were studied: zip1, zip2, zip3, zip4, msh4, spo16, ndj1, and sgs1. We demonstrated that many aspects of the CO behavior---such as CO level, CO interference, CO homeostasis, chromatid interference, and the behavior of COs near centromeres and telomeres---could be evaluated simultaneously using this method. We showed for the first time that CO homeostasis occurred in wild-type strains. We also identified Zip1 as important for CO suppression at the centromeres.;Using next-generation sequencing, we identified ∼54,000 markers and studied the recombination landscape in wild-type and three meiotic mutant tetrads: msh4, sgs1, and pCLB2-MMS4. We demonstrated that next-generation sequencing is a powerful tool for mapping the genome-wide landscape of meiotic recombination events. When coupled with multiplexing, sequencing drastically reduces the cost to lower than that of microarrays, making it possible for large scale experiments involved in studying meiotic mutants. We showed that complex gene conversion motifs near sites of crossing over could be identified and used to unlock the molecular mechanisms and regulations that govern the distribution and formation of recombination events. This technique will prove to be an invaluable contribution to the meiosis field and will help advance our understanding of meiotic recombination in the near future.
机译:减数分裂的核心是减数分裂重组,其中程序化的双链断裂被修复为交叉(CO)或非交叉(NCO)。 CO通过建立chiasmata来促进第一个减数分裂分裂过程中成功的染色体分离,chiasmata是同源染色体之间的物理连接,可提供张力以正确对齐I轴上的减数分裂。缺少CO的同系物可能导致不分离,导致非整倍体配子。 CO的数量和分布受到严格监管,以确保成功的减数分裂分裂。尽管CO的重要性,CO控制的机制仍然难以捉摸,这在很大程度上是由于难以确定全基因组水平上的CO分布。本论文中,我们描述了两种在全基因组范围内绘制CO和NCO分布图的方法使用两个多形酿酒酵母菌株S96和YJM798。首先,我们使用DNA微阵列在S96和YJM789的后代中鉴定了约8000个多态性标记。研究了八个减数分裂突变体:zip1,zip2,zip3,zip4,msh4,spo16,ndj1和sgs1。我们证明了使用这种方法可以同时评估CO行为的许多方面-例如CO水平,CO干扰,CO稳态,染色单体干扰以及着丝粒和端粒附近的CO行为。我们首次表明,CO稳态发生在野生型菌株中。我们还确定了Zip1对着丝粒处的CO抑制很重要。使用下一代测序,我们确定了约54,000个标记,并研究了野生型和3个减数分裂突变体四联体(msh4,sgs1和pCLB2-MMS4)中的重组态势。我们证明了下一代测序是绘制减数分裂重组事件全基因组图谱的有力工具。当与多路复用结合时,测序可以大大降低成本,使其成本低于微阵列,从而使参与减数分裂突变体研究的大规模实验成为可能。我们表明,可以确定交叉位点附近的复杂基因转化基序,并用于解锁控制重组事件的分布和形成的分子机制和法规。该技术将被证明是对减数分裂领域的宝贵贡献,并将有助于在不久的将来增进我们对减数分裂重组的理解。

著录项

  • 作者

    Chen, Stacy Yen-chun.;

  • 作者单位

    University of California, San Francisco.;

  • 授予单位 University of California, San Francisco.;
  • 学科 Biology Genetics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 255 p.
  • 总页数 255
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号