首页> 外文学位 >The micromechanical force balance established between the cytoskeleton and ECM regulate cell fate in three dimensions.
【24h】

The micromechanical force balance established between the cytoskeleton and ECM regulate cell fate in three dimensions.

机译:在细胞骨架和ECM之间建立的微机械力平衡在三个方面调节细胞命运。

获取原文
获取原文并翻译 | 示例

摘要

A recent goal of tissue engineering has been to develop tissue-equivalent constructs to aid in wound repair and regeneration. Cell remodeling processes are driven largely by the context of the local microenvironment. Fibrillar 3D extracellular matrix model systems offer a novel context by which to study basic cell-ECM dynamic interactions. In this work, a 3D fibrillar collagen matrix experimental system, in conjunction with a predictive model, was utilized to study individual fibroblast interactions with the localized surrounding ECM. Individual fibroblasts were monitored in real time using confocal reflection microscopy to quantify changes in local the ECM microstructure. In addition, a GFP-utrophin probe for F-actin was concurrently employed during live-cell imaging to monitor instantaneous cell surface area and actin stress fiber formation. Observed fibroblast behavior was monitored in response to variation in external ECM stiffness and quantified parameters were applied to a cell-ECM force balance model.;The force balance model incorporated experimental measures of cell surface area, local matrix strain, contractile force, and matrix modulus. To validate the force balance model in terms of individual fibroblast contractile force, pharmacologic agents we employed to perturb internal cell stiffness. The role of cytoskeleton filament structure vs. function was documented using Cytochalasin D to study the role of actin structure, Blebbistatin to study myosin contractile function independent of actin structure, and Nocodazole to study microtubule function. By isolating cytoskeleton structure and function we simultaneously documented changes in cell surface area and local matrix strain imparted by an individual fibroblast. These measurements were used to predict contractile force using a single cell-ECM force balance equation previously proposed. Finally, the predicted force trends were corroborated with levels of myosin light chain phosphorylation, a known biochemical indicator of contractile force. Findings indicate that cells alter internal contractile force through modulation of the cytoskeleton, in addition to cell surface area, to match the stiffness of the external ECM. Such findings applied to a predictive model system are important because they provide, for the first time, a verified model by which important parameters governing 3D cell behavior are related. Finally, this predictive model system can be utilized as a means to strategically advance design parameters for tissue engineering applications.
机译:组织工程的最新目标是开发与组织等效的构建体,以帮助伤口修复和再生。细胞重塑过程很大程度上受局部微环境的影响。纤维状3D细胞外基质模型系统提供了一个新颖的背景,通过它可以研究基本的细胞ECM动态相互作用。在这项工作中,结合预测模型,使用3D纤维状胶原基质实验系统研究了单个成纤维细胞与局部周围ECM的相互作用。使用共聚焦反射显微镜实时监测单个成纤维细胞,以量化局部ECM微结构的变化。此外,在活细胞成像过程中同时使用了F-肌动蛋白的GFP促卵磷脂探针,以监测瞬时细胞表面积和肌动蛋白应激纤维的形成。监测观察到的成纤维细胞行为以响应外部ECM刚度的变化,并将量化参数应用于细胞ECM力平衡模型。;该力平衡模型结合了细胞表面积,局部基质应变,收缩力和基质模量的实验测量。为了验证单个成纤维细胞收缩力方面的力平衡模型,我们采用了扰动内部细胞僵硬度的药物。使用细胞松弛素D来研究肌动蛋白结构的作用,Blebbistatin来研究肌动蛋白的收缩功能(独立于肌动蛋白的结构)以及Nocodazole来研究微管功能来记录细胞骨架丝结构对功能的作用。通过分离细胞骨架的结构和功能,我们同时记录了由单个成纤维细胞赋予的细胞表面积和局部基质应变的变化。这些测量值用于使用先前提出的单细胞ECM力平衡方程来预测收缩力。最后,预测的力量趋势与肌球蛋白轻链磷酸化水平相关,后者是已知的收缩力生化指标。研究结果表明,除细胞表面积外,细胞还通过调节细胞骨架来改变内部收缩力,以匹配外部ECM的硬度。此类发现适用于预测模型系统非常重要,因为它们首次提供了经过验证的模型,通过该模型可以控制3D单元行为的重要参数。最后,该预测模型系统可以用作策略性地推进组织工程应用的设计参数的手段。

著录项

  • 作者

    Campana, Kimberly A.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 93 p.
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号