首页> 外文会议>ASME Bioengineering Conference >3D CELL SHAPE AND CELL FATE ARE REGULATED BY THE DYNAMIC MICROMECHANICAL PROPERTIES OF THE CELL-ECM INTERFACE
【24h】

3D CELL SHAPE AND CELL FATE ARE REGULATED BY THE DYNAMIC MICROMECHANICAL PROPERTIES OF THE CELL-ECM INTERFACE

机译:通过细胞-ECM接口的动态微机械特性来调节3D细胞形状和细胞命运

获取原文
获取外文期刊封面目录资料

摘要

Mechanobiology is an interdisciplinary field that focuses on predicting and understanding cellular responses to mechanical loads. The extracellular matrix (ECM) represents a macromolecular framework that naturally imparts structural support and spatial organization for resident cells. The ECM also participates in the communication and transfer of mechanical loads to cells, in part, via integrin attachment to the cytoskeleton (CSK). Recently, using a tissue model in which cells are embedded in a 3D collagen ECM, we have shown that fundamental cell behaviors, including morphology, proliferation, contractility, and ECM remodeling properties, can be modulated by varying 3D microstructural organization and mechanical properties of the surrounding collagen fibrils[1]. While these and other results demonstrate the critical role played by the ECM in regulating cell behavior, the mechanical-based mechanisms underlying these critical cell-ECM interactions have yet to be fully elucidated [2]. Models have been proposed, such as tensegrity, to explain the role of CSK elements, such as microtubules and microfilaments, in determining cell shape and mechanics[3]. Furthermore, this theoretical model has been insightful in the design and interpretation of experimental approaches to investigate signaling cascades and internal molecular deformations that result from mechanical perturbation of a cell. In fact, recent studies have documented that mechanical cues conveyed by changes in cell shape and the CSK induce distinct differentiation programs within multi-potential stem cells [4]. Interestingly, the majority of mechanobiology studies conducted to date do not focus on the encompassing ECM component of the cellular microenvironment. In fact, most studies evaluating cell-ECM interaction use a model system in which cells are grown on a planar, plastic surface coated with a specific ECM component. Unfortunately, such a model system does not accurately mimic the in vivo cellular microenvironment in which the cell is typically surrounded by and attached to a 3D network of collagen fibrils (Figure 1).
机译:力学学是一个跨学科领域,专注于预测和理解对机械载荷的细胞反应。细胞外基质(ECM)表示自然赋予驻留电池的结构支撑和空间组织的大分子框架。 ECM还通过对细胞骨架(CSK)的整合蛋白附件参与电池的通信和转移机械载荷。最近,使用其中细胞嵌入3D胶原ECM中的组织模型,我们已经通过改变3D微观结构组织和机械性能来调节基本细胞行为,包括形态,增殖,收缩性和ECM重塑性能。围绕胶原纤维[1]。虽然这些和其他结果证明了ECM在调节细胞行为方面发挥的关键作用,但这些关键细胞-ECM相互作用的基于机械的机制尚未得到完全阐明[2]。模型已经提出,例如技术,以解释CSK元素,例如微管和微丝的作用,在确定细胞形状和机械期间[3]。此外,这种理论模型在实验方法的设计和解释方面已经有所了解,以研究由电池机械扰动导致的信号传导级联和内部分子变形。事实上,最近的研究记录了通过细胞形状的变化传达的机械提示和CSK在多电位干细胞内诱导不同的分化计划[4]。有趣的是,迄今为止进行的大多数力学学研究不关注细胞微环境的涵盖ECM组分。实际上,大多数评估细胞-ECM相互作用的研究使用模型系统,其中细胞在涂有特定ECM组分的平面上生长在平面上,塑料表面。不幸的是,这种模型系统不能准确地模拟体内蜂窝微环境,其中细胞通常被胶原纤维的3D网络包围并连接到3D网络(图1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号