首页> 外文学位 >Toward patient-specific finite element mesh development and validation of the cervical spine.
【24h】

Toward patient-specific finite element mesh development and validation of the cervical spine.

机译:面向患者的有限元网格开发和颈椎验证。

获取原文
获取原文并翻译 | 示例

摘要

Finite element (FE) analysis is a useful tool in spinal biomechanics because it can be used to study external and internal parameters in the intact as well as degenerated/instrumented spine. The geometry of the cervical spine is complex, making it difficult and time consuming to develop subject-specific hexahedral meshes. Additionally, subject-specific validation experiments are ideal but challenging due to difficulty in determining the soft tissue material properties. The cervical spine behaves nonlinearly; consequently, it is important to validate models by comparing the entire loading curve instead of the endpoint response.;We developed interactive multiblock methods for subject-specific hexahedral meshing of the cervical spine. The technique is user friendly and decreases the amount of time and effort required for subject-specific mesh development. Using our methods, we created a cervical spine C27 FE model. Experimental flexibility tests (+/-1 Nm flexion-extension, lateral bending, and axial rotation) were performed on the same specimen which was used to develop the model. The model's soft tissue properties were calibrated using varying properties from the literature, and the model was validated by comparing its nonlinear response to the experimental data.;The calibrated finite element model agreed favorably with the experimental results. In flexion, right lateral bending, and left axial rotation the shape of the moment rotation curve matched well for the entire loading curve. The most notable differences were in extension and right axial rotation near the endpoints, and left lateral bending at moments greater than 0.5 Nm. Coupled motions and individual level ranges of motion (ROMs) were also compared.;The validated model was used to study the adjacent level effects of simulated fusion using the hybrid loading protocol. ROMs and stresses at the non-fused levels increased in the fusion model as compared to the intact.;Despite the challenges and limitations associated with finite element modeling of the spine, we have successfully developed and validated a C27 model and have demonstrated its ability to assist in understanding the biomechanical effects of spinal interventions. The model can be used in additional studies to aid in the design of spinal devices.
机译:有限元(FE)分析在脊柱生物力学中是一种有用的工具,因为它可用于研究完整以及退化/器械化脊柱的外部和内部参数。颈椎的几何形状很复杂,因此很难开发特定对象的六面体网格。另外,特定于受试者的验证实验是理想的,但由于难以确定软组织材料的性质而具有挑战性。颈椎表现为非线性;因此,重要的是通过比较整个载荷曲线而不是终点响应来验证模型。;我们开发了用于受试者特定颈椎六面体啮合的交互式多块方法。该技术是用户友好的,并减少了特定主题的网格开发所需的时间和精力。使用我们的方法,我们创建了颈椎C27 FE模型。在用于开发模型的同一样品上进行了实验柔性测试(+/- 1 Nm屈伸,横向弯曲和轴向旋转)。该模型的软组织特性通过使用文献中的各种特性进行校准,并通过将其非线性响应与实验数据进行比较来验证该模型。校准后的有限元模型与实验结果吻合良好。在屈曲,向右弯曲和向左轴向旋转时,力矩旋转曲线的形状与整个载荷曲线完全匹配。最显着的差异是延伸和端点附近的右轴向旋转,以及在大于0.5 Nm的瞬间左横向弯曲。还比较了耦合运动和单个运动的水平范围(ROM)。使用验证的模型,使用混合加载协议研究模拟融合的相邻水平效应。与完整相比,融合模型中未融合水平的ROM和应力增加。尽管脊柱有限元建模存在挑战和局限性,但我们已经成功开发和验证了C27模型,并证明了其具有的能力。有助于了解脊柱干预的生物力学效果。该模型可用于其他研究中,以协助脊柱器械的设计。

著录项

  • 作者

    Kallemeyn, Nicole Ann.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号