首页> 外文学位 >Burst timing-dependent plasticity of NMDA receptor-mediated transmission in midbrain dopamine neurons: A putative cellular substrate for reward learning.
【24h】

Burst timing-dependent plasticity of NMDA receptor-mediated transmission in midbrain dopamine neurons: A putative cellular substrate for reward learning.

机译:中脑多巴胺神经元中NMDA受体介导的传递的突发时间依赖性可塑性:用于奖励学习的推定细胞底物。

获取原文
获取原文并翻译 | 示例

摘要

The neurotransmitter dopamine (DA) represents a neural substrate for positive motivation as its spatiotemporal distribution across the brain is responsible for goal-directed behavior and learning reward associations. The critical determinant of DA release throughout the brain is the firing pattern of DA-producing neurons. Synchronized bursts of spikes can be triggered by sensory stimuli in these neurons, evoking phasic release of DA in target brain areas to drive reward-based reinforcement learning and behavior. These bursts are generated by NMDA-type glutamate receptors (NMDARs). This dissertation reports a novel form of long-term potentiation (LTP) of NMDAR-mediated excitatory transmission at DA neurons as a putative cellular substrate for changes in DA neuron firing during reward learning.;Patch-clamp electrophysiological recording from DA neurons in acute brain slices from young adult rats demonstrated that synaptic NMDARs exhibit LTP in an associative manner, requiring coordinated pre- and postsynaptic burst firing. Ca2+ signals produced by postsynaptic burst firing needed to be amplified by preceding metabotropic neurotransmitter inputs to effectively drive plasticity. Activation of NMDARs themselves was also necessary. These two coincidence detectors governed the timing-dependence of NMDAR plasticity in a manner analogous to the timing rule for cue-reward learning paradigms in behaving animals. Further mechanistic study revealed that PKA, but not PKC, activity gated LTP induction by regulating the magnitude of Ca2+ signal amplification via the inositol 1,4,5-triphospate (IP3) receptor and release of Ca2+ from intracellular stores. Plasticity of NMDARs was input specific and appeared to be expressed postsynaptically, but was not associated with a change in NMDAR subunit stoichiometry. LTP of NDMARs was DA-independent, and was specific for NMDARs: the same induction protocol produced long-term depression of AMPA receptors. NMDARs that had undergone LTP could be depotentiated in a spike-conditional manner, consistent with active unlearning. Finally, repeated, in vivo amphetamine experience dramatically increased facilitation of spike-evoked Ca2+ signals, which in turn drove enhanced plasticity.;NMDAR plasticity thus represents a potential neural substrate for conditioned DA neuron burst responses to environmental stimuli acquired during reward-based learning as well a novel therapeutic target for intervention-based therapy of addictive disorders.
机译:神经递质多巴胺(DA)代表了积极动机的神经基质,因为其在大脑中的时空分布负责目标定向行为和学习奖励关联。 DA在整个大脑中释放的关键决定因素是产生DA的神经元的放电方式。这些神经元中的感觉刺激可以触发同步的突增爆发,引起目标脑区域DA的阶段性释放,从而推动基于奖励的强化学习和行为。这些爆发是由NMDA型谷氨酸受体(NMDAR)产生的。本论文报道了NMDAR介导的DA神经元兴奋性传递的长期增强(LTP)的一种新形式,作为在奖励学习过程中DA神经元放电变化的推定细胞底物。急性脑中DA神经元的膜片钳电生理记录年轻成年大鼠的切片表明,突触NMDAR以关联的方式表现出LTP,需要突触前和突触后协同射击。突触后爆发发射所产生的Ca2 +信号需要通过之前的代谢型神经递质输入来放大,以有效地驱动可塑性。 NMDAR本身的激活也是必要的。这两个巧合检测器以类似于行为动物提示性学习范式的时序规则来控制NMDAR可塑性的时序相关性。进一步的机理研究表明,PKA而不是PKC活性通过调节经由肌醇1,4,5-三磷酸(IP3)受体的Ca2 +信号放大幅度以及从细胞内存储中释放Ca2 +来控制LTP诱导。 NMDAR的可塑性是特定输入的,似乎是突触后表达的,但与NMDAR亚基化学计量的变化无关。 NDMARs的LTP不依赖于DA,并且对NMDARs是特异性的:相同的诱导方案会长期抑制AMPA受体。经历了LTP的NMDAR可以以尖峰条件方式进行去势化,这与主动学习无关。最后,重复的体内苯丙胺体验极大地增强了尖峰诱发的Ca2 +信号的促进作用,进而促进了可塑性的增强; NMDAR可塑性因此代表了潜在的神经基质,可用于条件性DA神经元对基于奖励的学习过程中获得的对环境刺激的反应的条件DA神经元爆发反应。是一种基于干预的成瘾性疾病的新型治疗靶标。

著录项

  • 作者

    Harnett, Mark Thomas.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号