首页> 外文学位 >Device engineering of organic field-effect transistors toward complementary circuits.
【24h】

Device engineering of organic field-effect transistors toward complementary circuits.

机译:有机场效应晶体管向互补电路的器件工程。

获取原文
获取原文并翻译 | 示例

摘要

Organic complementary circuits are attracting significant attention due to their high power efficiency and operation robustness, driven by the demands for low-cost, large-area and flexible devices. Previous demonstrations of organic complementary circuits often show high operating voltage, small noise margins, low dc gain, and electrical instability such as hysteresis and threshold voltage shifts. There are two obstacles to developing organic complementary circuits: the lack of high-performance n-channel OFET devices, and the processing difficulty of integrating both n - and p-channel organic field-effect transistors (OFETs) on the same substrate. The operating characteristics of OFETs are often governed by the boundary conditions imposed by the device architecture, such as interfaces and contacts instead of the properties of the semiconductor material. Therefore, the performance of OFETs is often limited if either of the essential interfaces or contacts next to the semiconductor and the channel are not optimized.;This dissertation presents research work performed on OFETs and OFET-based complementary inverters in an attempt to address some of these knowledge issues. The objective is to develop high-performance OFETs, with a focus on n-channel OFETs through interface engineering both at the interface between the organic semiconductor and the source/drain electrodes, and at the interface between the organic semiconductor and gate dielectric. Through interface engineering, both p- and n-channel high-performance low-voltage OFETs are realized with high mobilities, low threshold voltages, low subthreshold slopes, and high on/off current ratios. Optimization at the gate dielectric/semiconductor also gives OFET devices excellent reproducibility and good electrical stability under multiple test cycles and continuous electrical stress. Finally, with the interfaces and contacts optimized for both p- and n-channel charge transport, the integration of n- and p-channel OFETs with comparable performance are demonstrated in complementary inverters. The research achieves inverters with a high-gain, a low operation voltage, good electrical stability (absence of hysteresis), and a high switching-speed. A preliminary study of the encapsulation of OFETs and inverters with an additional protective layer is also presented to validate the practicality of organic devices containing air-sensitive n-channel transport.
机译:由于对低成本,大面积和柔性器件的需求,有机互补电路由于其高功率效率和操作鲁棒性而备受关注。先前有机互补电路的演示通常显示出较高的工作电压,较小的噪声容限,较低的dc增益以及诸如磁滞和阈值电压漂移之类的电气不稳定性。开发有机互补电路有两个障碍:缺乏高性能的n沟道OFET器件,以及将n沟道和p沟道有机场效应晶体管(OFET)集成在同一基板上的处理困难。 OFET的工作特性通常由器件架构所施加的边界条件(例如界面和接触)代替,而不是由半导体材料的特性决定。因此,如果未优化靠近半导体和沟道的基本接口或接点中的任何一个,则通常会限制OFET的性能。本论文介绍了在OFET和基于OFET的互补逆变器上进行的研究工作,旨在解决某些问题。这些知识问题。目的是通过在有机半导体与源/漏电极之间的界面以及在有机半导体与栅极电介质之间的界面上的界面工程,开发高性能的OFET,重点是n通道OFET。通过接口工程,可实现具有高迁移率,低阈值电压,低亚阈值斜率和高开/关电流比的p和n通道高性能低压OFET。栅极电介质/半导体的优化还使OFET器件在多个测试周期和连续电应力下具有出色的可重复性和良好的电稳定性。最后,通过针对p通道和n通道电荷传输进行了优化的接口和触点,在互补逆变器中展示了具有可比性能的n通道和p通道OFET的集成。该研究实现了具有高增益,低工作电压,良好的电稳定性(无磁滞)和高开关速度的逆变器。还提出了对带有附加保护层的OFET和逆变器封装的初步研究,以验证包含对空气敏感的n通道传输的有机器件的实用性。

著录项

  • 作者

    Zhang, Xiaohong.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号