首页> 外文学位 >Improvements to Fidelity, Generation and Implementation of Physics-Based Lithium-Ion Reduced-Order Models
【24h】

Improvements to Fidelity, Generation and Implementation of Physics-Based Lithium-Ion Reduced-Order Models

机译:基于物理的锂离子降序模型保真度,生成和实现的改进

获取原文
获取原文并翻译 | 示例

摘要

Battery management systems (BMS) require computationally simple but highly accurate models of the battery cells they are monitoring and controlling. Historically, empirical equivalent-circuit models have been used, but increasingly researchers are focusing their attention on physics-based models due to their greater predictive capabilities. These models are of high intrinsic computational complexity and so must undergo some kind of order-reduction process to make their use by a BMS feasible: we favor methods based on a transfer-function approach of battery cell dynamics.;In prior works, transfer functions have been found from full-order PDE models via two simplifying assumptions: (1) a linearization assumption---which is a fundamental necessity in order to make transfer functions---and (2) an assumption made out of expedience that decouples the electrolyte-potential and electrolyte-concentration PDEs in order to render an approach to solve for the transfer functions from the PDEs. This dissertation improves the fidelity of physics-based models by eliminating the need for the second assumption and, by linearizing nonlinear dynamics around different constant currents.;Electrochemical transfer functions are infinite-order and cannot be expressed as a ratio of polynomials in the Laplace variable s. Thus, for practical use, these systems need to be approximated using reduced-order models that capture the most significant dynamics. This dissertation improves the generation of physics-based reduced-order models by introducing different realization algorithms, which produce a low-order model from the infinite-order electrochemical transfer functions.;Physics-based reduced-order models are linear and describe cell dynamics if operated near the setpoint at which they have been generated. Hence, multiple physics-based reduced-order models need to be generated at different setpoints (i.e., state-of-charge, temperature and C-rate) in order to extend the cell operating range. This dissertation improves the implementation of physics-based reduced-order models by introducing different blending approaches that combine the pre-computed models generated (offline) at different setpoints in order to produce good electrochemical estimates (online) along the cell state-of-charge, temperature and C-rate range.
机译:电池管理系统(BMS)需要它们所监视和控制的电池单元的计算简单但高度准确的模型。从历史上看,已经使用了经验等效电路模型,但是由于它们具有更好的预测能力,越来越多的研究人员将注意力集中在基于物理的模型上。这些模型具有很高的内在计算复杂度,因此必须经过某种降阶处理才能使BMS可行:我们赞成基于电池动力学的传递函数方法的方法。通过两个简化的假设从全阶PDE模型中发现:(1)线性化假设---这是建立传递函数的基本必要条件---(2)出于权宜之计而解开的假设电解质势和电解质浓度的PDE,以便提供一种解决PDE传递函数的方法。通过消除对第二种假设的需要,并通过线性化围绕不同恒定电流的非线性动力学,提高了基于物理模型的保真度。电化学传递函数是无穷阶的,不能表示为拉普拉斯变量中多项式的比率s。因此,对于实际应用,需要使用捕获最重要动态的降阶模型来近似这些系统。本文通过引入不同的实现算法,改进了基于物理学的降阶模型的生成,该算法从无限级电化学传递函数产生了低阶模型。在产生它们的设定点附近运行。因此,需要在不同的设定点(即,荷电状态,温度和C速率)生成多个基于物理学的降阶模型,以扩展电池的工作范围。本文通过引入不同的混合方法来改进基于物理的降阶模型的实现,该方法将在不同设定点生成(离线)的预计算模型进行组合,以便沿电池荷电状态产生良好的电化学估计(在线) ,温度和C速率范围。

著录项

  • 作者

    Rodriguez Marco, Albert.;

  • 作者单位

    University of Colorado Colorado Springs.;

  • 授予单位 University of Colorado Colorado Springs.;
  • 学科 Electrical engineering.;Engineering.;Energy.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 221 p.
  • 总页数 221
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号