首页> 外文学位 >Applications of Molecular Theory in Solvation of Pharmaceutical Solutes, Ions and Amine-Grafted Silica Gel
【24h】

Applications of Molecular Theory in Solvation of Pharmaceutical Solutes, Ions and Amine-Grafted Silica Gel

机译:分子理论在药物溶质,离子和胺接枝硅胶溶剂化中的应用

获取原文
获取原文并翻译 | 示例

摘要

Solvation and solvent effects play an important role in diverse chemical processes ranging from reaction kinetics to molecular recognition, solubility, solvato-chromism and phase separations. Despite enormous activities in this field, quantitative solvation calculations remain an enormous intellectual challenge.;My thesis is focused on development and application of molecular density functional theory (MDFT) and molecular dynamics (MD) simulation to predicting solvation properties. Accomplishments include 1) improved the average unsigned error of MDFT predictions for the room-temperature solvation free energies (SFE) of 504 pharmaceutical molecules in water from 1.04 kcal/mol to 0.66 kcal/mol; 2) established a more reliable numerical procedure to calculate the direct correlation functions (DCF) of solvent from MD simulations; 3) extended MDFT prediction of SFE to different temperatures and calibrated the theoretical results with experimental data for the hydration free energies of 5 nitrotolunenes and a library of 197 solutes at 277 K, 298 K and 313 K. In addition, I investigated the 3-dimensional (3D) solvation structure of amine-grafted silica gel in liquid water by applying a spherical harmonics expansion method to the MD trajectories. The simulation results provide evidence on the strong influence of the silica surface on hydration structure, which is often ignored in the theoretical analysis of surface reactions. Furthermore, I developed a hybrid method for predicting the SFE of spherical ions by combining MDFT with MD simulations. The numerical analysis justifies the universality of the bridge functional that can be reasonably approximated by the modified fundamental measure theory (MFMT) for hard-sphere systems.;Results from this thesis demonstrate that the DCFs are important in application of MDFT to SFE predictions. Based DCF from on integral-equation methods, MDFT can also capture the temperature effect on SFE in good agreement with experiment. In addition, the hybrid MDFT-MD method provides accurate predictions of hydration free energies for charged solutes and the numerical analysis sheds light on future theoretical development. The efficient sampling method for generating 3D density profiles from MD may open up opportunities for application of MDFT to more complex systems, for example, protein solvation and enzyme kinetics. By studying the solvation structure of amine-grafted silica shell, I found that the silica surface affects not only the distribution of surrounding water but also the hydrogen-bonding network. This surface effect is long-ranged and can be reduced with longer grafted amine chains.
机译:溶剂化和溶剂效应在从反应动力学到分子识别,溶解度,溶剂合色度和相分离等多种化学过程中都起着重要作用。尽管在该领域有大量活动,但是定量溶剂化计算仍然是一个巨大的智力挑战。;我的论文集中在分子密度泛函理论(MDFT)和分子动力学(MD)模拟的发展和应用,以预测溶剂化性质。成就包括:1)将504种药物分子在水中的室温溶剂化自由能(SFE)的MDFT预测值的平均无符号误差从1.04 kcal / mol提高到0.66 kcal / mol; 2)建立了更可靠的数值程序,以通过MD模拟计算溶剂的直接相关函数(DCF); 3)将SFE的MDFT预测扩展到不同的温度,并用5个硝基甲苯的水合自由能和197 K的溶质库在277 K,298 K和313 K上的实验数据校准了理论结果。此外,我还研究了3-通过将球形谐波扩展方法应用于MD轨迹,将胺接枝硅胶在水水中的三维(3D)溶剂化结构。模拟结果提供了关于二氧化硅表面对水合结构的强烈影响的证据,这在表面反应的理论分析中常常被忽略。此外,我开发了一种通过将MDFT与MD模拟相结合来预测球形离子SFE的混合方法。数值分析证明了桥梁功能的普遍性,可以通过改进的基本测量理论(MFMT)合理地近似于硬球系统。;本文的结果表明,DCF在将MDFT应用于SFE预测中非常重要。基于积分方程法的DCF,MDFT还可以捕获温度对SFE的影响,与实验吻合得很好。此外,混合MDFT-MD方法可提供带电溶质的水合自由能的准确预测,并且数值分析为未来的理论发展提供了启示。用于从MD生成3D密度分布图的有效采样方法可能为将MDFT应用到更复杂的系统(例如蛋白质溶剂化和酶动力学)开辟机会。通过研究胺接枝二氧化硅壳的溶剂化结构,我发现二氧化硅表面不仅影响周围水的分布,而且影响氢键网络。这种表面效应是长距离的,可以通过更长的接枝胺链来降低。

著录项

  • 作者

    Sheng, Shijie.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Chemical engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号