首页> 外文学位 >Hierarchical Design of Connected Cruise Control: Perception, Planning, and Execution
【24h】

Hierarchical Design of Connected Cruise Control: Perception, Planning, and Execution

机译:联网巡航控制系统的分层设计:感知,计划和执行

获取原文
获取原文并翻译 | 示例

摘要

The emerging wireless Vehicle-to-Vehicle (V2V) communication technologies can be exploited to monitor the motion of distant vehicles, even those beyond the line of sight. Incorporating the data provided by V2V communication into vehicle control systems has great potentials for enhancing vehicle safety, improving traffic mobility, and reducing fuel consumption. In this dissertation, Connected Cruise Control (CCC) is proposed to regulate the longitudinal motion of vehicles by incorporating motion data received from multiple vehicles ahead via V2V communication. CCC allows the incorporation of human-driven vehicles that do not broadcast information. Moreover, it needs neither a designated leader nor a prescribed connectivity topology. Such flexibility makes CCC practical for implementation in real traffic, leading to a Connected Vehicle Network (CVN) that is comprised of CCC vehicles and conventional human-driven vehicles. The design of CCC is challenging since V2V communication leads to complex connectivity topologies and may have significant information delays. Moreover, uncertainties arising from the vehicle dynamics and the varying traffic environment lead to additional complexity for CCC design.;To reduce design complexity, a hierarchical framework is utilized for systematically designing CCC that remains scalable for complex vehicle networks. This framework is comprised of three levels: perception level, planning level, and execution level. At the perception level, a causality detector is proposed to determine whether the information received from V2V communication is relevant to the CCC vehicle. Then, we design a linklength estimator to identify the number of vehicles between the broadcasting vehicle and the receiving vehicle. Based on the output of the link length estimator, we also design a network-dynamics identifier to approximate the nonlinear time-delayed dynamics of vehicle networks, which can be used to predict the motion of the vehicle immediately ahead by using the information received from distant vehicles. At the planning level, a general controller is presented to generate the desired longitudinal dynamics by incorporating information delays and connectivity topologies. We derive conditions for choosing control gains which can ensure the asymptotic stability of the equilibrium and can also attenuate perturbations from vehicles ahead. A motif-based approach is proposed for modular design of complex vehicle networks that is scalable when the number of vehicles increases. Simulation results show the advantages of V2V communication in improving traffic dynamics by attenuating disturbances. At the execution level, we consider a physics-based vehicle model that includes uncertain vehicle parameters and external disturbances such as aerodynamic drag. An adaptive sliding-mode controller is designed to regulate the engine torque, in order to make the vehicle state track the desired longitudinal dynamics.
机译:可以利用新兴的无线车辆对车辆(V2V)通信技术来监视远处车辆的运动,甚至包括那些在视线之外的车辆。将V2V通信提供的数据整合到车辆控制系统中,具有增强车辆安全性,提高交通机动性和减少燃油消耗的巨大潜力。本文提出了一种基于CC2的互联巡航控制系统,该算法通过合并从前方多辆车辆通过V2V通信接收到的运动数据来调节车辆的纵向运动。 CCC允许合并不广播信息的人为驾驶的车辆。而且,它既不需要指定的领导者,也不需要规定的连接拓扑。这种灵活性使CCC在实际交通中的实施变得切实可行,从而导致了一个由CCC车辆和传统的人类驾驶车辆组成的互联车辆网络(CVN)。 C2的设计具有挑战性,因为V2V通信会导致复杂的连接拓扑,并且可能会造成严重的信息延迟。此外,由于车辆动力学和变化的交通环境引起的不确定性导致CCC设计的额外复杂性。为了降低设计复杂性,采用了分层框架来系统地设计CCC,CCC对于复杂的车辆网络仍然具有可扩展性。该框架由三个级别组成:感知级别,计划级别和执行级别。在感知级别上,提出了因果关系检测器以确定从V2V通信接收的信息是否与CCC车辆相关。然后,我们设计一个链路长度估计器,以识别广播车辆和接收车辆之间的车辆数量。基于链路长度估计器的输出,我们还设计了一个网络动力学标识符,以近似车辆网络的非线性时滞动力学,该网络动力学标识符可用于通过使用从远处接收到的信息来预测前方车辆的运动。汽车。在计划级别,提出了一种通用控制器,通过合并信息延迟和连接拓扑来生成所需的纵向动力学。我们得出选择控制增益的条件,这些条件可以确保平衡的渐近稳定性,也可以减弱前方车辆的扰动。针对复杂车辆网络的模块化设计,提出了一种基于主题的方法,该方法可在车辆数量增加时进行扩展。仿真结果显示了V2V通信在通过减少干扰来改善交通动态方面的优势。在执行级别,我们考虑基于物理的车辆模型,其中包括不确定的车辆参数和外部干扰,例如空气阻力。自适应滑模控制器设计用于调节发动机扭矩,以使车辆状态跟踪所需的纵向动力学。

著录项

  • 作者

    Zhang, Linjun.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号