首页> 外文学位 >Self-Assembly of Nanoporous Silica Particles for Tagging and Sensing Applications
【24h】

Self-Assembly of Nanoporous Silica Particles for Tagging and Sensing Applications

机译:用于标记和传感应用的纳米多孔二氧化硅颗粒的自组装

获取原文
获取原文并翻译 | 示例

摘要

Meso(nano)porous silica particles are of broad interest for many photonic applications, filtration, drug delivery, catalysis. Through a self-assembly process, one can achieve silica particles spanning in size from microns to tens of nanometer. In the early stage of self-assembly it is observed that 20--50 nm seed particles are formed with hexagonally packed open cylindrical nanochannels. However, what is unknown is how these seed-like particles aggregate and self-align their pores to form final multi-micron particles with self-sealed channels extended over the entire particle. In the course of this research, we examined the assembly mechanism of mesoporous multi-micron size silica particles with long cylindrical pores of 4-5 nm in diameter. We further showed that the observed alignment of channels was thermodynamically favored by a decrease in the Gibbs free energy of the particles. Besides a fundamental understanding of the mechanism of morphogenesis and pore formation, we demonstrated that the results of this finding could be further extended to make multi-hierarchical, sponge-like structured particles. Such particles can be used for controlled release of various substances from semi-sealed cylindrical pores of the particles. Next, we focused on fluorescent silica particles formed by loading fluorescent dye inside the sealed nanochannels. Such photonic materials find applications in tagging/labeling of biological cells and as tracers. Previous works have shown that physical encapsulation of dye leads to ultrabright properties. However, the nature of ultrabrightness was unclear. Here we investigated the ultrabrightness phenomenon observed for dye hosting nanoparticles and micron size discoid-shaped particles. This investigation revealed that the ultrabrightness was caused by a specific hydrophobic nanoscale environment around the encapsulated dye molecules offered by surfactant molecules inside the nanochannels. This environment allows dye molecules to be packed in concentrations which are not attainable for free dye without quenching of fluorescent properties. The close proximity of the encapsulated dye molecules to each other allows them to utilize the quantum energy transfer between dyes with complementary emission and absorbance (donor-acceptor pairs), which is called Forster resonance energy transfer (FRET). Using FRET, we demonstrated ultrabright temperature nanosensor (nanothermometers). Nanothermometers were assembled by encapsulating two different dyes, in which one of them was temperature-sensitive while the other acted as reference. The FRET based sensor comes with an advantage where a single excitation source can be used to excite the particle fluorescence. To demonstrate the working principle of nanothermometers, a 3D temperature distribution around a hot wire immersed in hydrogel-particles system was measured. The observed experimental results were validated by computation.
机译:介孔(纳米)二氧化硅颗粒在许多光子应用,过滤,药物输送,催化中受到广泛关注。通过自组装过程,可以获得粒径范围从微米到数十纳米的二氧化硅颗粒。在自组装的早期阶段,观察到20--50 nm的种子颗粒形成有六角形堆积的开放圆柱纳米通道。但是,未知的是这些种子状颗粒如何聚集并自我对准其孔,以形成最终的微米级颗粒,并具有在整个颗粒上延伸的自密封通道。在这项研究过程中,我们研究了直径为4-5 nm的长圆柱孔的中孔微米级二氧化硅颗粒的组装机理。我们进一步表明,观察到的通道排列在热力学上受到了颗粒吉布斯自由能的降低的促进。除了对形态发生和孔形成的机理有基本了解外,我们还证明了这一发现的结果可以进一步扩展,以制造出多层次的海绵状结构化颗粒。此类颗粒可用于从颗粒的半密封圆柱孔中控制释放各种物质。接下来,我们集中在通过在密封的纳米通道内加载荧光染料形成的荧光二氧化硅颗粒。此类光子材料可用于生物细胞的标记/标记以及作为示踪剂。以前的工作表明,染料的物理包封会导致超亮特性。但是,超亮度的性质尚不清楚。在这里,我们调查了染料纳米粒子和微米大小的盘状颗粒观察到的超亮现象。这项研究表明,超亮度是由纳米通道内表面活性剂分子提供的包封染料分子周围特定的疏水性纳米级环境引起的。这种环境允许染料分子以不产生荧光性质猝灭的游离染料无法达到的浓度堆积。封装的染料分子彼此非常接近,使它们能够利用具有互补发射和吸收(供体-受体对)的染料之间的量子能量转移,这称为Forster共振能量转移(FRET)。使用FRET,我们演示了超亮温度纳米传感器(纳米温度计)。纳米温度计通过封装两种不同的染料组装而成,其中一种对温度敏感,另一种作为参考。基于FRET的传感器具有一个优势,其中可以使用单个激发源来激发粒子荧光。为了演示纳米温度计的工作原理,测量了浸入水凝胶颗粒系统中的热丝周围的3D温度分布。通过计算验证了观察到的实验结果。

著录项

  • 作者

    Kalaparthi, Vivekanand.;

  • 作者单位

    Tufts University.;

  • 授予单位 Tufts University.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号